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__________________________________________________________________________________________ 

Abstract 

 

In this paper we examine whether data from business tendency surveys are useful for forecasting the macro 

economy in the short run. Our analyses primarily concern the growth rates of real GDP but we also evaluate 

forecasts of other variables such as unemployment, price and wage inflation, interest rates, and exchange-rate 

changes. The starting point is a so-called dynamic factor model (DFM), which is used both as a framework for 

dimension reduction in forecasting and as a procedure for filtering out unimportant idiosyncratic noise in the 

underlying survey data. In this way, it is possible to model a rather large number of noise-reduced survey 

variables in a parsimoniously parameterised vector autoregression (VAR). To assess the forecasting performance 

of the procedure, comparisons are made with VARs that either use the survey variables directly, are based on 

macro variables only, or use other popular summary indices of economic activity. As concerns forecasts of GDP 

growth, the procedure turns out to outperform the competing alternatives in most cases. For the other macro 

variables, the evidence is more mixed, suggesting in particular that there often is little difference between the 

DFM-based indicators and the popular summary indices of economic activity. 
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1. Introduction 

 

 The interest in, and demand for, macroeconomic analyses at high frequencies, most 

notably forecasts, has increased substantially in recent years. One reason for this may be the 

rapid evolution of global capital and financial markets that has affected the preconditions of 

economic policy making in important ways. With larger financial markets, capital flows gain 

in importance, and are more easily and rapidly transmitted to the real parts of the macro 

economy. The same holds true for expectational effects which, to a significant extent, are 

affecting the prices set on financial markets. This, in turn, creates a need amongst policy 

makers to analyse and follow economic developments on a more frequent basis. 

Another conceivable reason is that economic policy in recent years has successively 

become more target-oriented. For example, many countries have introduced targets for their 

rates of inflation (including Sweden, the country that we study). Similarly, in the case of fiscal 

policy, targets for budget surpluses and debt or spending levels have been formulated. In 

order to be able to continuously monitor such objectives, policy makers need to have access to 

quick and reliable information about current economic conditions and about possible 

directions of developments in the near future. To have a good understanding of the current 

stance of the macro economy is also a prerequisite for making good judgements about 

developments in the longer term (and for being able to give credible explanations of such 

developments). 

 Making analyses and forecasts of data observed at relatively high frequencies is not an 

easy task. Compared with annual data, data that are observed daily, monthly, and quarterly 

typically display more complicated dynamics, are seasonal, and are – at least as concerns real 

variables – more frequently revised. One category of data that has the potential of being rather 

useful in this context is that produced by surveys. Survey data have the advantage of 
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essentially being instantaneously accessible, never being revised, and, furthermore, having 

little or no measurement errors. The objective of the present paper is to exploit whether such 

data can successfully be used for purposes of forecasting important variables of the macro 

economy. Our empirical application is based on the Swedish Business Tendency Survey 

(BTS). 

 The Swedish BTS is a large business survey based on questions about economic activity 

posed to approximately 7 000 different firms in various sectors of the Swedish economy. The 

sectors currently included are manufacturing, construction, and, since 1991, services. As a 

percentage of the total number of employed workers, these sectors cover around 50 percent of 

the Swedish economy. The full survey is undertaken quarterly, but a subset of the survey has 

also been available monthly since 1996. The questions are both coincident (regarding the 

development the current quarter) and forward- looking (regarding the development the next 

quarter).1 If the analysis is limited to the manufacturing and construction industries, then the 

survey provides continuous time series for most questions since the mid-1970s. In this case, 

the number of survey questions used is approximately 3 000 and the coverage in terms of 

employed workers around 25 percent. 

 Previous research into the forecasting properties of the Swedish BTS has focused on 

establishing direct relationships between the variable to be forecast (typically, the growth rate 

of industrial production) and the BTS data. The approaches range from simple single-equation 

models (see, e.g., Bergström, 1992, 1993a, Lindström, 2000) to Kalman-filter-based updating 

schemes and sophisticated turning-point analyses (see, e.g., Rahiala and Teräsvirta, 1993, 

Kääntä and Tallbom, 1993, Öller and Tallbom, 1996, Lindström, 1999, Koskinen and Öller, 

                                                                 
1The questions of the survey are such that the firms are merely asked to specify whether a particular activity 
(e.g., production or order flows) has increased, been unchanged, or decreased (or, in the forward-looking case, 
whether the activity is expected to increase, remain unchanged, or decrease). In some cases, the questions are 
dichotomous, just requiring a “yes” or a “no”. The final quantities used are “net balances” obtained by 
subtracting the weighted percentages of firms that have specified an increase from the weighted percentages of 
firms that have specified a decrease (or, just the weighted shares if the questions are dichotomous). For further 
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2003). A common finding is that only very few BTS variables are useful for macro 

forecasting, and that the information content in the forward- looking BTS series is particularly 

weak. One of the main results of the present paper is that the forecasting performance of the 

BTS data can be considerably improved if the BTS variables are appropriately filtered prior to 

forecasting, and thus indirectly, rather than directly, related to the variable to be forecast.2 

 The benefits of making use of an indirect, rather than direct, link between the BTS data 

and the data to be predicted proceed from the fact that changes in the BTS data can not always 

be assumed to contain signals that are relevant for activity at the aggregate level. More 

specifically, it seems likely that idiosyncratic sector-specific changes in a particular series are 

largely unrelated to the overall state of economic activity. The filtering technique thus entails 

getting rid of this series-specific “noise” and only keeping those parts of the data that are 

common to the series under consideration. In the terminology of Burns and Mitchell (1946), 

we wish to identify a “reference cycle” which is associated with co-movements in different 

forms of economic activity. 

 As it happens, the proposed filtering procedure also has the property of implying a 

dimension-reduction framework for the BTS variables. From the forecasting literature it is 

well known that forecasting approaches using many explanatory variables, and thus many 

estimated parameters, generate forecasts that quickly become inefficient and unstable. 

Parsimony is thus considered to be a desirable feature of a forecasting model. Our proposed 

procedure addresses this issue by summarising the observable information of the large BTS 

data set by a single common-factor index. 

                                                                                                                                                                                                           
details, see www.konj.se (the homepage of the National Institute of Economic Research, which publishes the 
survey). 
2One previous analysis that supports the premise that the forecasting performance of the Swedish BTS may be 
enhanced by filtering techniques is that undertaken by Christoffersson, Roberts, and Eriksson (1992). Although 
these authors do not explicitly favour the kind of filtering procedure that we propose, they show, using methods 
in the frequency domain, that the BTS series both are noisy at high frequencies and highly collinear. This makes 
it difficult to directly include them as explanatory variables in a conventional forecasting equation. 
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 To undertake the filtering of the BTS data we employ a standard so-called dynamic factor 

model (DFM). Such models have previously been used for similar purposes, but have hardly 

been applied to survey data. Useful general references include Stock and Watson (1989, 1991, 

1999, 2002), Camba-Mendez, Kapetanios, Smith, and Weale (1999), Fukuda and Onodera 

(2001), Forni, Hallin, Lippi, and Reichlin (2000, 2003). The European Commission (2000), 

Goldrian, Lindbauer, and Nerb (2001), and Bruno and Malgarini (2002) are examples of 

studies that make use of survey data.3 The DFM, and further issues related to the BTS data, 

are discussed in Section 2. 

 The forecasting performance of the BTS data filtered by the DFM is investigated using 

almost-real-time out-of-sample experiments. Here, the idea is that the forecaster takes the 

estimated common-factor index as given and computes the forecasts as if there is no 

knowledge about the generating mechanisms of the index. Thus, the forecaster fits a standard 

dynamic forecasting model, a vector autoregression (VAR). Each VAR consists of the 

estimated common-factor index and a particular macro variable for which we wish to derive 

forecasts. Alternatively, the DFM – which also permits dynamic (multi-step) forecasting of 

the common-factor index – can be integrated fully in the forecasting system, but this requires 

solving a numerical maximum-likelihood (ML) algorithm in each recursion. To avoid this, the 

VAR seems to be a plausible alternative for purposes of assessing the forecasting performance 

of the estimated common-factor index in a realistic manner. Furthermore, our experiments are 

almost in real time since the forecasts are recursive and based on the one-sided (time t 

conditional) estimates of the common-factor index. 

 To assess the relative accuracy of the DFM-based VAR forecasts, we make forecast 

comparisons using three alternative approaches to forecasting the macro variables. These are 

VARs that use unfiltered BTS variables (i.e., that include the survey variables directly without 

                                                                 
3The models developed in Stock and Watson (1999), Camba-Mendez, Kapetanios, Smith, and Weale (1999), and 
Forni, Hallin, Lippi, and Reichlin (2000, 2003) make use of some survey variables but are mainly based on 
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employing the DFM filter); VARs that use information on macro variables only; and VARs 

that use other popular summary indices of economic activity. The DFM-based forecasts of the 

growth rate of real GDP are discussed in Section 3.1. Alternative forecasts of GDP growth are 

evaluated in Section 3.2. Finally, forecasts of other macro variables are analysed in Section 

3.3. 

By making comparisons with VARs based on the unfiltered survey data we are able, in 

terms of forecast precision, to assess the gain made from first applying the DFM to the BTS 

data (relative to not doing so). That is, we can quantify the effects in forecasting from 

parsimoniously modelling the noise-reduced BTS series rather than the original series 

themselves. The comparisons with macro VARs instead enable us to judge  how well we do 

relative to the “standard forecasting model”. They also make it possible to evaluate the 

comparative loss in forecast accuracy experienced when the forecasting horizon is prolonged. 

A priori, it may be expected that the BTS data work best for forecasting at short horizons (one 

or two quarters ahead), while the information in macro data is most useful for forecasting at 

business-cycle frequencies (a couple of years ahead). Finally, the comparisons with VARs 

based on other summary indices of activity allow us to shed some light on the performance of 

our procedure when holding the gains of dimension reduction constant. Like the DFM 

procedure, such summary indices have the advantage of enabling the use of very 

parsimonious forecasting models, without having to give up too much of the relevant 

forecasting information. 

                                                                                                                                                                                                           
macro variables. 
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2. The dynamic factor model 

 

In this section we discuss and estimate the dynamic factor model used to filter the 

business survey data. The output of this analysis is an estimate of a common-factor index 

which summarises the co-movements in a broad range of different economic activities such as 

production, order flows, time of deliveries, employment, and stocks of raw materials and 

goods. The index is constructed in such a way that it acknowledges that activities occur in 

different sectors of the economy and that there may be lead- lag relationships between them. 

Because, as mentioned previously, the questions of the survey regard both activities in the 

current and next quarter, the whole analysis is undertaken for two different versions of the 

index: one coincident (current quarter) and one forward- looking (next quarter). 

 

 

2.1. Specification 

 

Let the n dimensional vector that collects the relevant BTS series be denoted by tX . It is 

assumed that the variables in tX  are (stochastically) stationa ry so that they can be normalised 

to have mean zero and unit variance. The assumption of stationarity is not restrictive: all BTS 

series are distinctively cyclical without trends (whether stochastic or deterministic). Standard 

unit-root tests confirm that all series are stationary I(0). 

In the model, tX  is driven by two stochastic components: the unobserved scalar index tC , 

which is common to all the variables in tX , and the equally unobserved n dimensional 

component tI , which represents the idiosyncratic movements in the series. A slightly 

generalised version of the model allows tC  to be k dimensional with 1>> kn . The variables 
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in tX  are in this case thus driven by at least two common indices. When experimenting with 

different values of k, however, we find that it suffices to use 1=k . The model, in its general 

form, is: 

 

ttt ICLX += )(γ , (1) 

ttCL ηφ =)( , (2) 

 

where L is the lag operator such that jtt
j yyL −=  for any vector or scalar variable y while 

)(Lγ  and )(Lφ  are vector and scalar lag polynomials, respectively. The elements in tI  and tη  

are the system’s disturbances such that idiosyncratic shocks are purely temporary while 

common shocks may display some persistence. The assumption of a purely temporary process 

for the idiosyncratic component can be relaxed in favour of more general autoregressive 

specifications but was found to fit the data well in this particular application. 

 As it stands, model (1)−(2) is a standard DFM. As is well known, it is econometrically 

unidentified unless restrictions on its feasible set of parameter values are imposed. The 

following restrictions can be shown to be sufficient for identification: the disturbances in tI  

and tη  are mutually and serially uncorrelated; the scalar tC  enters at least one of the variables 

in (1) only contemporaneously; and, the standard deviation of tη  is normalised to unity (or, 

equivalently, one of the contemporaneous parameters in )(Lγ  is normalised to unity). 

 To estimate the model, it is cast in so-called state-space form. One can then apply the 

Kalman filter together with an ML routine to obtain estimates of the unknown parameters and 

the unobserved components, i.e., the common-factor index tC  and the idiosyncratic noise 

processes in tI  (for details see Harvey, 1989, Hamilton, 1994). The analysis permits 



 11 

calculation of both one-sided and two-sided estimates of tC  (and tI ). The former are 

conditional on the information available at time t (written ttC ) while the latter are conditional 

on the information available at end of sample (written TtC , with T being the last observation 

of the sample). The two-sided estimates TtC  may thus be regarded as being the “best” 

possible guesses of tC , given a particular sample Tt  ,...,1= . 

 In the forecasting exercises presented below we make use of the one-sided estimates of tC  

only. The reason is that we wish to simulate a recursive out-of-sample forecasting experiment 

without having to update the estimated DFM in each recursion. Given that the BTS data are 

not revised over time, the one-sided estimates will be approximately real time provided the 

DFM is empirically stable. Ideally, the experiments should be made using the two-sided 

estimates generated by a recursively updated DFM but, since the model has to be solved 

numerically, this approach is in practice unfeasible.4 

 Having discussed the technical aspects of the DFM, we now turn our attention to the BTS 

variables included in the vector tX . Although model (1)−(2) is quite flexible, it is parametric 

and thus has limitations as concerns the number of variables that it can handle. All in all, the 

quarterly Swedish BTS at present includes 39 variables related to the manufacturing sector, 

and 19 variables related to the construction sector. Of these, roughly 25 percent are available 

as forward- looking (8 for manufacturing and 4 for construction). When deciding which of the 

variables to use in the DFM the following circumstances have been important. First, some of 

the variables have rather short time series and are therefore not well suited for econometric 

analyses of the kind undertaken here. Second, a couple of variables give information about 

similar activities and are therefore redundant. Third, nominal variables, which only provide 

                                                                 
4Although it may not be possible to update the DFM itself recursively, the two-sided estimates of the common-
factor index are easily updated recursively given the full-sample estimate of the DFM. The empirical results 
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indirect information on the amount of real activity, are excluded altogether. Using these 

criteria we end up with a feasible set consisting of 12 coincident variables and 7 forward-

looking variables. The details are shown in Table 1. 

 

 [Insert Table 1 here] 

 

 As discussed previously, the questions of the BTS are typically trichotomous; i.e., firms 

merely have to indicate whether a particular activity has increased, remained unchanged, or 

decreased (or, in the forward- looking case, whether the activity is expected to increase, 

remain unchanged, or decrease). However, for publication purposes, only the differences 

between the two extreme alternatives are used (the so-called net balances). Since such 

transformations are not sufficient in a statistical sense, it may be the case that analyses based 

on the full trichotomous scale yield better results than do those that just use the net balances. 

In this paper we nevertheless choose to stick to variables transformed in form of net balances. 

This choice is based partly on previous research that suggests that the transformation is not 

very restrictive (Bergström, 1993b), and partly on the fact that the net balances are the 

officially published quantities. 

 

 

2.2. Results 

 

The estimates of the coincident and forward- looking indices obtained by using model (1)–

(2) and emanating from the variables listed in Table 1 appear in Fig. 1. As emphasised above, 

the indices are constructed directly from the one-sided estimates of the common factors using 

                                                                                                                                                                                                           
when using these estimates instead of the one-sided ones were approximately the same. The paper uses the one-
sided estimates because they are somewhat easier to compute and more common. 
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either only coincident BTS data or only forward- looking BTS data.5 Because the DFM is a 

pure time-series filter, its parameters have no particular interpretation. For this reason, and for 

expository convenience, we do not explicitly present the estimated model parameters here 

(although these are of course available upon request). Error-term diagnostics (again not shown 

for purposes of saving space) suggest that the two estimated DFMs by and large have 

acceptable statistical properties. 

 

 [Insert Fig. 1 here] 

 

The time paths of the two estimated indices very much confirm the commonly held view 

about the development of economic activity in Sweden during the 1980s and 1990s. In the 

early 1980s, the economy moved towards a recession following the cost shocks associated 

with the oil-price hikes of 1979−1981. Around those years, the estimated indices reached their 

local minima during the last quarter of 1981. Two large currency devaluations were 

undertaken during the third quarter of 1981 and the fourth quarter of 1982. These led to a 

dramatic improvement of the Swedish economy’s competitiveness, and formed the basis for 

the persistent boom during the remaining years of the 1980s. Gradually, however, the 

competitive advantages from the devalued exchange rate were eroded by wage increases that 

substantially exceeded those in other countries. On top of that, markets of asset prices ran into 

severe problems in the late 1980s due to excessive increases in, among other things, real 

estate and share prices. All this eventually led to the very sharp downturn of 1990−1992, 

vividly depicted by the two estimated indices. Presumably, the downturn was also partly 

related to the interest-rate shock necessary to defend the fixed exchange-rate system that 

                                                                 
5We also experimented with models that were based on differences between the coincident and forward-looking 
variables but such models did not turn out to perform well. The final models include variables BTVI101, 
BTVI105, BTVI301, BTVI305, BTVI306, BTVI308, BBOA101, BBOA102, BBOA106, BBOA201, BBOA202, 
and BBOA204 (cf. Table 1). 
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prevailed at that time. In November 1992, Sveriges Riksbank (the Swedish central bank) 

abandoned the fixed exchange rate in favour of a floating exchange rate. The currency 

depreciated sharply in response to that switch, and activity again increased. After having 

reached a peak in 1994−1995, the economy experienced a short-lived slowdown mainly due 

to slackening economic activity in foreign countries (in particular, in central Europe). During 

the course of 1996 Sveriges Riksbank lowered its policy rate by approximately 5 percentage 

points, from around 9 percent to roughly 4 percent. In 1997 and most of 1998 the policy rate 

stayed within the interval 4−4.5 percent, to be further lowered during the end of 1998 and 

during 1999. Together with a recovery in the international economy, this monetary policy 

stance had positive effects on activity in 1997−2000. The mild downturn around the fourth 

quarter of 1998 and the first quarter of 1999 mainly resulted from shocks on international 

financial markets, including the suspension of debt payments in Russia. During 2000 a more 

serious slowdown occurred. This decrease in activity was related to a weakening of the 

international business cycle, including a correction of the over-optimism that had been 

established within the perceived “New Economy”. 

 To sum up, the coincident and forward- looking indices estimated from the BTS data 

appear to accord rather well with common interpretations of cyclical developments in the 

Swedish economy over the last two decades. The next issue to be dealt with is to investigate 

whether this information can also successfully be used for the purpose of out-of-sample 

forecasting. 
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3. Forecasts 

 

In this section we undertake an almost-real-time out-of-sample forecasting experiment 

that aims at shedding light on how useful the two estimated common-factor indices are for 

forecasting the macro economy in the short run. The forecasting model throughout is a 

standard VAR. The macro variables to be forecast are GDP growth, employment growth, 

unemployment, short- and long-term interest rates, exchange-rate growth, wage inflation, and 

price inflation (both underlying and headline).6 Evaluations of forecast accuracy are 

undertaken for four different forecast horizons : one quarter, two  quarters, four  quarters, and 

eight quarters. 

 For natural reasons, the forecasts that are of greatest interest are those of the economy’s 

total output performance, i.e. of the growth rate of GDP. In what follows we thus put special 

emphasis on these forecasts and describe the results for the other macro aggregates somewhat 

more summarily. Also, due to the high-frequency nature of the survey data, the forecasts at 

the longer horizons (i.e., at the four- and eight-quarter horizons) should not be expected to 

perform very well. Most of our discussions will therefore relate to the forecasts at the relevant 

one- and two-quarter horizons. 

 For variables expressed in growth rates, two different transformations are considered: 

log first differences and log four-quarter differences; i.e., if y is the original series in levels, 

then we consider forecasts of either )log()log( 1−− tt yy  or )log()log( 4−− tt yy  (at which y 

possibly is seasonally adjusted in the case of first differences). Unemployment and the two 

                                                                 
6Details of the data are given in the Data Appendix. To make the analysis genuinely in real time while still 
evaluating forecasting performance in the most appropriate way, it appears that one would like to make use both 
of preliminary and final data releases. Formally, if y is the variable to be forecast and z the variables contained in 
the conditioning set, then one would like to estimate the forecasting function g based on preliminary data 
releases, y(p) = g(z(p)) + e(p), but evaluate the forecast error with respect to final releases, y(f) – g(z(p)) 
(provided the absolute value of y – y(f) is smaller than the absolute value of y – y(p), where y is the true 
outcome). In this paper, the macro variables are nevertheless constructed using final (most recent) data releases. 
Investigating the importance of preliminary data releases (that are of lower quality than final releases) is left to 
future work. 
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interest rates however are always in levels. All in all, this means that we evaluate forecasts of 

15 variables: 6 variables in consecutive quarterly growth rates, 6 variables in four-quarter 

growth rates, and 3 variables in levels. 

Concerning the arrival of information, we make the following assumptions. In the case of 

real variables and wage inflation, there is an information lag of one quarter such that when we 

observe the BTS variables in quarter t, the variables to be forecast are only known up to and 

including quarter 1−t . The nominal variables (except wage inflation), on the other hand, have 

no information lag and are thus observed simultaneously with the BTS data in each quarter. 

These information lags correspond approximately to the publication lags that prevail today for 

these particular variables.7 

The VARs that are estimated are as follows: 

 

tttt YLZLY εβα ++= )()( , (3) 

tttt YLZLZ εβα ~)(
~

)(~ ++= , (4) 

 

where constants are omitted for expository convenience. The scalar variable Y is the variable 

to be forecast and Z is a 1−q  dimensional vector of predictors, such that the full VAR is q-

variate, 2≥q . When the BTS variables and the popular summary indices are used, the 

polynomial )(Lα  includes contemporaneous effects; i.e., Z enters equation (3) both 

contemporaneously and lagged. The macro VARs are, on the other hand, restricted such that Z 

only enters (3) lagged. The remaining polynomials )(Lβ , )(~ Lα , and )(~ Lβ  are always 

restricted to exclude contemporaneous effects. The lag length is determined by minimising the 

system-based Bayesian information criterion (BIC). 

                                                                 
7The information lag associated with wage inflation derives from the fact that this variable is generated from 
wage sums and hours worked; i.e., variables that are part of the national accounts. 
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 The VARs that are based on the estimated common factors and the popular summary 

indices are always bivariate ( 2=q ). Thus, in these models, Z is a scalar containing a single 

leading indicator of Y. In the case of macro VARs and VARs based on unfiltered BTS 

variables, we impose the restriction that the variable dimension is at most of fifth order 

( 5≤q ). Given the feasible sets of explanatory macro variables (see the discussion above) and 

BTS variables (see Table 1), this implies that we estimate a total of 2 916 macro VARs and 

13 365 VARs based on unfiltered BTS variables. Thus, in the case of macro VARs and VARs 

based on unfiltered BTS variables, we are able to analyse empirical distributions of forecasts 

and forecast errors. Here, different distributions obtain for each of the 9 variables that are 

forecast (GDP growth; employment growth; unemployment; the short-term interest rate; the 

long-term interest rate; exchange-rate growth; wage inflation; underlying CPI inflation; 

headline CPI inflation) and type of forecasting model (consecutive quarterly macro VAR; 

four-quarter macro VAR; consecutive quarterly VARs based on unfiltered coincident BTS 

variables; four-quarter VARs based on unfiltered coincident BTS variables; consecutive 

quarterly VARs based on unfiltered forward- looking BTS variables; four-quarter VARs based 

on unfiltered forward- looking BTS variables). 

 The forecasts are computed as follows. The full sample period has 2001:3 as its last 

quarterly observation. To undertake the out-of-sample experiments we exclude quarters 

1995:3−2001:3 (25 observations). Since we wish to derive the forecasts recursively the 

procedure entails repeated re-estimation of equations (3) and (4) by successively adding 

observations from the excluded quarters. In each recursion, we generate forecasts of the 

macro variables at the one-quarter, two-quarter, four-quarter, and eight-quarter horizons. With 

25 quarters excluded from the full sample, this generates (for each variable to be forecast and 

type of forecasting model) 25, 24, 22, and 18 recursive forecasts (and corresponding forecast 

errors) at the one-quarter, two-quarter, four-quarter, and eight-quarter horizons, respectively.  
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The exact procedure in the case Z in equations (3)–(4) is the estimated coincident or forward-

looking common factor is outlined in Table 2. 

 

 [Insert Table 2 here] 

 

 The analysis of forecast accuracy is mainly based on the out-of-sample (root) mean-

squared (forecast) error (RMSE) associated with a particular forecasting procedure. Under the 

hypothesis of unbiasedness, the RMSE is simply the standard deviation of the out-of-sample 

forecast errors. When analysing performance in relative terms, we compute ratios of RMSEs. 

Under certain circumstances, it is possible to undertake a test of the hypothesis that the 

relative RMSE equals unity (see Clark and McCracken, 2001, and Stock and Watson, 2001). 

If this hypothesis is rejected, then we can conclude that there is a statistically significant 

difference between the performances of the two forecasting models under consideration. But 

such tests require that the forecasting models that are being compared are nested, i.e., are 

related by a parametric simplification. This does not apply to the models compared in the 

present analysis, and the distributions of the relative RMSEs are therefore unknown. 

However, critical values tabulated in previous research may still serve as rules of thumb. For 

example, the 5 percent critical values reported by Stock and Watson (2001) indicate that 

relative RMSEs greater than 1.02–1.04 and smaller than 0.96–0.98 are statistically significant. 

By this measure, most relative RMSEs reported in this paper are statistically significant. 

 In our benchmark estimations, we fit all VARs without paying any attention to the 

models’ in-sample performance. To gain some insights into how the analysis is affected if the 

VARs are required to fulfil criteria of in-sample performance, we repeat all forecasting 

experiments conditional on the forecasting equations satisfying certain tests of error-term 

adequacy. We compute three standard tests of model misspecification: the Breusch-Godfrey 
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LM test against autocorrelation; Engle’s LM test against ARCH effects; and, Chow’s 

parameter stability test. For the in-sample conditioning filter not to be too restrictive, we 

choose to consider a particular model as having acceptable in-sample properties if it passes at 

least two of the three error-term tests (at the conventional 5 percent test error margin). The 

reason for conditioning the forecasting models on their in-sample performance is that 

forecasters in practice presumably would pay some attention to such aspects when deriving 

their models. On the other hand, there is evidence that suggests that the link between in-

sample and out-of-sample performance is (at best) weak (see, e.g., Stock and Watson, 2003). 

Therefore, using in-sample criteria that are too restrictive may entail eliminating models that 

do not perform very well in sample but nevertheless work well for purposes of out-of-sample 

forecasting. This constitutes the main reason for disregarding in-sample performance in the 

benchmark estimations, and only using an informal procedure when investigating robustness 

of results with respect to such considerations. 

 

 

3.1. GDP-growth forecasts using the estimated common factors 

 

 Details of the misspecification tests, and the results that obtain when applying them to 

models fitted to GDP growth, are shown in Table 3. As can be seen, the two-out-of-three 

requirement means that all VAR models that use the estimated common factors and GDP 

growth (whether measured as consecutive quarterly or four-quarter growth) qualify for the 

conditional out-of-sample forecasting comparisons. We note that, to the extent that the models 

do not pass the misspecification tests, it is the parameter stability requirement that seems to be 

the most difficult criterion to fulfil.8 This is interesting because the models have been 

explicitly designed to be (very) parsimoniously parameterised. Thus, although parsimonious, 
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the models still display tendencies of instability. Judging from previous evidence, whether 

this is a problem or not when it comes to out-of-sample forecasting is unclear. The results in 

this paper (as is shown below) support the previous finding that in-sample performance is 

largely unrelated to out-of-sample forecasting accuracy. 

 

[Insert Table 3 here] 

 

Table 4 summarises the properties of the recursive GDP-growth forecasts using various 

measures of forecast accuracy. Looking first at the reported RMSEs we conclude that 

forecasts, even at very narrow horizons, are surrounded by a considerable amount of 

uncertainty. A 95 percent confidence interval for normally distributed forecast errors at the 

one- and two-quarter horizons has a width of around 2.2−2.4 percentage points when GDP 

growth is measured at a consecutive quarterly rate. For four-quarter growth, the width is 

around 3−4 percentage points. 

 The size of the typical forecast error (as measured by the mean absolute error, MAE) at 

the one- and two-quarter horizons is in the range 0.4−0.5 percentage points for consecutive 

quarterly growth, and 0.6−0.8 percentage points for four-quarter growth, reflecting the high 

uncertainty associated with the forecasts. Not surprisingly, all forecasts become successively 

less accurate as one prolongs the forecasting horizon. 

 

 [Insert Table 4 here] 

 

 From a more detailed study of the time paths of the forecast errors it becomes evident that 

particularly large errors occur when the growth rate is at, or close to, a “turning point” (in the 

                                                                                                                                                                                                           
8This is a general finding that holds true for all forecasting models investigated in this paper. 
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sense that positive growth switches to negative growth and vice versa). To discern the extent 

to which the measures of forecast accuracy are influenced by large prediction errors that occur 

relatively infrequently, Table 4 also gives median-based measures of forecast accuracy (called 

RMedSEs and MedAEs). Comparing the root of the median-squared errors with the usual 

RMSEs, it can indeed be seen that large errors in the tails of the forecast-error distributions 

(which translate to the distributions of squared errors being skewed to the right) contribute to 

significantly worsening the forecasting performance of the procedures. In the case of median-

based uncertainty measures, the widths of the aforementioned confidence intervals decrease 

by around 1 percentage point for both the consecutive quarterly and four-quarter growth 

forecasts. Similarly, a comparison of the median absolute errors with the usual MAEs shows 

that the typical forecast error is generally smaller when judged by the median-based MAE, 

often by an amount around 0.1−0.2 percentage points. This “turning-point problem” is typical 

for linear forecasting models, which are highly influenced by the (average) persistence of the 

variables in the conditioning set. A non- linear alternative provides a potential solution to the 

problem, but applying such a framework would go beyond the scope of this paper. 

Investigating the effects of making the DFM framework more flexible by allowing for non-

linearities is thus left to future work. 

 The final measure of forecast accuracy reported in Table 4 is Theil’s U. This measure 

normalises the usual RMSE by measuring it in relation to the standard deviation of the actual 

data. In this way, it is possible to make comparisons between different series that are forecast, 

no matter what their scales are. Because four-quarter GDP growth is a series that displays 

much greater volatility than consecutive quarterly GDP growth, the RMSEs of the forecast 

errors for these two series cannot be compared without taking this feature into account. As 

shown by the figures in the last column of Table 4, if the comparisons of forecast accuracy are 

performed taking the scale difference between the two series into account, then forecasts of 
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four-quarter growth (at the horizons of interest) are approximately twice as accurate as 

forecasts of consecutive quarterly growth. This suggests, as expected, that it is generally 

easier to forecast four-quarter rather than consecutive quarterly growth. 9 

 

 

3.2. Alternative GDP-growth forecasts 

 

 The DFM-based forecasts of GDP growth are compared with various alternative GDP-

growth forecasts in Tables 5–10. The comparisons with unfiltered BTS variables appear in 

Tables 5 and 6, with macro data in Tables 7 and 8, and with other popular summary indices of 

activity in Tables 9 and 10. These tables have the same basic format: the entries are relative 

RMSEs computed for various forecast horizons at which the RMSEs of the DFM-based 

VARs appear in the denominator so that numbers greater (smaller) than unity mean that the 

DFM-based VARs outperform (are outperformed by) the alternative forecasts. 

Tables 5–8 have further similarities: in these tables, we compare the RMSEs of the DFM-

based VARs with RMSEs of alternative forecasts generated by making use of empirical 

distributions. These distributions are obtained from the forecasts of all possible q-variate 

VARs given certain feasible conditioning sets (see the discussion above) and the restriction 

that 5≤q  (including GDP growth). The first two rows in the upper and lower panels of 

Tables 5–8 construct the relative RMSEs by making use of the medians and means of the 

RMSE distributions of the alternative forecasts. The interpretation of these numbers is thus 

that they give a yardstick for assessing the performance of the DFM-based VARs relative to a 

typical alternative forecast that would obtain when using the BTS data unfiltered (i.e., without 

                                                                 
9Another interesting feature of Theil’s U is that it implicitly provides a benchmark against the random-walk 
forecasting model. In the case of a random walk, Theil’s U always takes on the value of unity. Thus, if a model 
produces a Theil’s U strictly less than unity, then it outperforms the random-walk alternative. From the last 
column in Table 4 it is seen that the DFM-based VAR forecasts always outperform the random-walk forecasts. 
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employing the DFM filter) or making use of macro variables only. The remaining rows in the 

upper and lower panels of these tables (“Best x-quarter”) substitute the central-tendency 

moments for the optimised RMSEs at the x-quarter horizon, 8 4, 2, ,1=x , and report the 

relative RMSEs that obtain when residually using the same model to derive the forecasts at 

the other horizons. These numbers thus allow us to undertake a comparison with the best 

possible forecast at a certain horizon that can be derived using the BTS variables unfiltered or 

the macro variables (and also to see how well the model used to compute this forecast 

performs, in relative terms, at other horizons). 

 Turning first to the results in Tables 5 and 6, it is seen that the DFM filter generally 

improves the forecasting performance of the VARs. This holds true especially in the case of 

the forward- looking variables. For these variables, the DFM-based VARs outperform the rival 

models at the one- and two-quarter horizons in all cases, even if the models based on the 

unfiltered variables are optimised (with respect to the particular forecast horizons). Moreover, 

the results do not depend on whether GDP growth is measured at a consecutive quarterly or 

four-quarter rate. 

 

 [Insert Tables 5 and 6 here] 

 

 From the results in brackets, we see that the picture is unaltered when conditioning the 

forecasting models on their in-sample performance (see the discussion above). The difference 

between the numbers without and within brackets is marginal even though as much as 20–30 

percent of the models are discarded in some cases (coincident data in Table 5). The finding in 

previous studies that in-sample performance is largely unrelated to out-of-sample 

performance is thus confirmed here.10 

                                                                 
10This is a general finding for the models analysed in this paper, cf. Section 3.3. 
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 Next, turning to the comparison with macro data (Tables 7 and 8), we find that the DFM 

approach again outperforms the rival models at all one- and two-quarter horizons. As before, 

the results are enhanced for the forward- looking data. As expected, the gains from using 

macro variables increase with the length of the forecast horizon: at the eight-quarter horizon 

the DFM forecasts never give lower RMSEs than the forecasts based on macro variables. But, 

the DFM-based models, in several cases, do surprisingly well even at the four-quarter horizon 

(see Table 8). 

 

 [Insert Tables 7 and 8 here] 

 

 The results that compare the DFM-based GDP-growth forecasts with the forecasts of GDP 

growth based on popular summary indices of activity are in Tables 9 and 10. They are 

qualitatively similar to those in the previous tables: the DFM forecasts dominate at short 

horizons and the improvement is somewhat larger for forward- looking variables. One 

particularly interesting feature of the comparisons with the popular summary indices is that 

the DFM – except in the case of coincident data at the four-quarter horizon – outperforms the 

so-called activity index of Statistics Sweden by a relatively large margin (see the last row in 

each panel in Tables 9 and 10). This is interesting because the activity index is explicitly 

designed to be a short-run indicator of the growth rate of GDP and in practice used by many 

of the professional forecasters. Since both indicators are now being analysed and published 

continuously (see www.scb.se and www.konj.se), future work may make a further 

contribution by comparing the performance of these indicators in genuine real time. 

 

 [Insert Tables 9 and 10 here] 
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3.3. Forecasts of other macro variables 

 

 Having established that the estimated common factors work rather well for purposes of 

forecasting the growth rate of GDP, it seems plausible that they would also be useful for 

forecasting other key variables that depict the development of the macro economy. The results 

compiled in Tables 11–14 shed light on this issue. 

 Generally, the picture that emerges from inspecting these tables is far less clear-cut than 

that obtained for the growth rates of GDP. While the DFM-based forecasts on average still 

outperform the forecasts based on macro variables and unfiltered BTS variables, the popular 

summary indices now often show a performance that comes quite close to that of the common 

factors. In particular, this holds true for the analyses undertaken with consecutive quarterly 

data (see Tables 11 and 13). 

 It is of interest to note that details of measurement now seem to matter in a significant 

way. This was not the case for forecasts of the growth rate of GDP. For example, in the case 

of consecutive quarterly data and inflation forecasts, the DFM typically outperforms the 

popular summary indices of economic activity (see the first two columns in Tables 11 and 

13). However, when the data are in four-quarter rates, the opposite finding obtains (see the 

same columns in Tables 12 and 14). Similarly, while the DFM is generally outperformed by 

the popular summary indices in the case of consecutive quarterly data and employment-

growth and unemployment forecasts (see columns 5–8 in Tables 11 and 13), it is the other 

way around when these forecasts are obtained using data measured in four-quarter rates (see 

the same columns in Tables 12 and 14). Results for forecasts of wage inflation depend 

moreover on the measurement of the common factor. Here, there is a tendency that the DFM 
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works better for BTS data that are coincident rather than forward- looking (cf. the last two 

columns of Tables 11–14).11 

 

 [Insert Tables 11–14 here] 

 

 

4. Summary and concluding remarks 

 

In this paper we examine whether data from business-tendency surveys are useful for 

forecasting the macro economy in the short run. Our analyses primarily concern the growth 

rates of real GDP but we also evaluate forecasts of other variables such as unemployment, 

price and wage inflation, interest rates, and exchange-rate changes. 

The starting point is a so-called dynamic factor model (DFM), which is used to summarise 

the information content of the survey data. The benefits of the DFM proceed from the fact that 

changes in the survey data can not always be assumed to contain signals that are relevant for 

activity at the aggregate level. More specifically, it seems likely that idiosyncratic sector-

specific changes in a particular series are largely unrelated to the overall state of economic 

activity. The filtering technique thus entails getting rid of this series-specific “noise” and only 

keeping those parts of the data that are common to the series under consideration. The 

proposed filtering procedure has the additional property of implying a dimension-reduction 

framework for the survey variables. From the forecasting literature it is well known that 

forecasting approaches using many explanatory variables, and thus many estimated 

parameters, generate forecasts that quickly become inefficient and unstable. The procedure 

                                                                 
11The measurement of the common factor is found to be important for the GDP-growth forecasts as well, see 
Section 3.2. But for these forecasts, the results are found to improve (rather than deteriorate) when the BTS data 
are forward-looking instead of coincident. 
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addresses this issue by summarising the observable information of the large survey data set by 

a single common-factor index. 

 Because the questions of the survey regard activities in the current as well as in the next 

quarter, we are able to use the DFM to estimate both a coincident and forward- looking index. 

These indices are then used in a VAR analysis together with the macro variables that we wish 

to forecast. 

 To assess the relative accuracy of the DFM-based VAR forecasts, we make forecast 

comparisons using three alternative approaches to forecasting the macro variables. These are 

VARs that use unfiltered BTS variables (i.e., that include the survey variables directly without 

employing the DFM filter); VARs that use information on macro variables only; and VARs 

that use other popular summary indices of economic activity. By making comparisons with 

VARs based on the unfiltered survey data we are able, in terms of forecast precision, to assess 

the gain made from first applying the DFM to the BTS data (relative to not doing so). That is, 

we can quantify the effects in forecasting from parsimoniously modelling the noise-reduced 

BTS series rather than the original series themselves. The comparisons with macro VARs 

instead enable us to judge how well we do relative to the “standard forecasting model”. 

Finally, the comparisons with VARs based on other summary indices of activity allow us to 

shed some light on the performance of our procedure when holding the gains of dimension 

reduction constant. Like the DFM procedure, such summary indices have the advantage of 

enabling the use of very parsimonious forecasting models, without having to give up too 

much of the relevant forecasting information. 

 The evaluations are undertaken by subjecting both the DFM-based VARs and the rival 

models to a recursive out-of-sample forecasting competition. Most of our analyses concern 

forecasts at the one- and two-quarter horizons but, in some cases, we also investigate 

performance at slightly longer horizons (one year and two years in the future). 
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In our benchmark comparisons, we fit all VARs without paying any attention to the 

models’ in-sample performance. However, to gain some insights into how the analysis is 

affected if the VARs are required to fulfil criteria of in-sample performance, we repeat all 

forecasting experiments conditional on the forecasting equations satisfying certain standard 

tests of error-term adequacy. The difference between the benchmark comparisons and the 

comparisons that condition on in-sample performance turns out to be small despite the fact 

that many models are rejected when subjected to the in-sample criteria. This confirms the 

finding in previous studies that in-sample performance is largely unrelated to out-of-sample 

performance. 

 As concerns forecasts of GDP growth, the DFM procedure outperforms the competing 

alternatives in most cases. Its performance is particularly striking in the case of forward-

looking survey data, where it consistently outperforms the rival alternatives. As expected, the 

performance of the macro VARs improves as the forecast horizon is prolonged. These VARs 

almost never outperform the DFM-based VARs at the one- and two-quarter horizons, but 

generate growth forecasts that are reliably more accurate at the eight-quarter horizon. 

For the other macro variables, the evidence is more mixed. While the DFM-based 

forecasts generally still outperform the forecasts based on macro variables and unfiltered 

survey variables, the popular summary indices now often show a performance that comes 

quite close to that of the common factors. 

A general finding of interest when it comes to forecasts of other macro variables is that 

details of measurement seem to be of greater importance than in the case of GDP-growth 

forecasts. For example, forecasts that are accurate for variables measured in consecutive 

quarterly growth are not necessarily accurate when the same variables are measured at a four-

quarter rate (and vice versa). 
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 The findings in this paper relate to the recent research that reports good forecasting 

performance results for dynamic factor models (Forni, Hallin, Lippi, and Reichlin, 2000, 

2003, and Stock and Watson, 1999, 2002). However, in a recent paper, Stock and Watson 

(2003) find evidence that simple mean combination forecasts (derived from simple indicator 

regressions augmented with AR terms) outperform DFM-based forecasts in many cases. The 

simple mean forecasts are found to work well, although the underlying individual forecasts 

display substantial instability. Our analyses do not comprise an evaluation of a mean 

combination forecast alternative. The reason for this is that we became aware of the finding of 

Stock and Watson (2003) after having completed our research. Another limitation of our 

analyses is that they do not allow for forecasting models that are non- linear. To allow for non-

linearities would be interesting, especially since we find that many models suffer from 

problems of parameter instability and large forecast errors at, or around, turning points. We 

intend to address these issues in future work. 
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Data Appendix 

 

 The sources of data are as follows. GDP growth, price inflation (underlying UND1X and 

headline CPI), wage inflation, unemployment, and employment growth are from Statistics 

Sweden and the NIER. The short-term interest rate is from IMF Financial Statistics. The long-

term interest rate is from OECD Main Economic Indicators and Sveriges Riksbank. The 

exchange-rate growth is from Sveriges Riksbank and the NIER. The survey data (Swedish 

Business Tendency Survey, BTS) are from the NIER (see Table 1). The popular summary 

indices are from Statistics Sweden and the NIER (see Tables 9 and 10). 

 CPI inflation, underlying (UND1X) inflation, unemployment, short- and long-term 

interest rates, and the exchange-rate growth are in quarterly averages. The wage variable is 

obtained by dividing the wage sum by the number of hours worked. Unemployment is open 

(official) unemployment in the age group 16–64. The short-term interest rate is a three-month 

rate while the long-term interest rate is a ten-year rate. The employment variable is based on 

the number of hours worked. The exchange-rate variable is the effective rate and computed 

using the IMF’s TCW (Total Competitiveness Weights). 

 For variables expressed in growth rates, two different transformations are considered: log 

first differences and log four-quarter differences. Except for exchange-rate growth, all first-

differenced variables are seasonally adjusted. Among the level variables (unemployment and 

the two interest rates) only unemployment is seasonally adjusted. In addition, all BTS 

variables are seasonally adjusted. The method of seasonal adjustment is TRAMO/SEATS 

(with automatic BIC-based model selection). 
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Table 1 

The BTS variablesa 

Activity Coincident Forward-looking 

Manufacturing industries 

Production BTVI101 BTVI301 

Orders received (domestic) BTVI105 BTVI305 

Orders received (exports) BTVI106 BTVI306 

Time of deliveries BTVI108  

As-of-now judgement of orderbooks BTVI201  

Number of workers employed BTVI203 BTVI308 

As-of-now judgement of stocks of raw materials  BTVI208  

As-of-now judgement of stocks of finished goods BTVI210  

Construction industries 

Construction BBOA101 BBOA201 

Stocks of offers accepted BBOA102 BBOA202 

As-of-now judgement of orderbooks BBOA104  

Number of workers employed BBOA106 BBOA204 

a Each entry gives the code used by the National Institute of Economic Research to denote the particular 
survey question. In the DFM, the variables are normalised to have unit variances and zero means. The sample 
runs from 1978:1−2001:4 in the case of coincident variables and from 1978:2−2002:1 in the case of forward-
looking variables. 
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Table 2 

Set-up for recursive forecasts using the estimated common factorsa 

 Coincident index (C ) Forward-looking index (C) 

Variables to be forecast (Y): GDP growth; employment growth; unemployment; wage inflation 

Sample eq. (3) s−4:1978 , 2:2001,...,2:1995=s  m−4:1979 , 2:2001,...,2:1995=m  

Sample eq. (4) s−4:1978 , 3:2001,...,3:1995=s  m−4:1979 , 3:2001,...,3:1995=m  

Information set 
14:784:78 ,...,,,..., −ss YYCC , 

3:2001,...,3:1995=s  

14:7914:79 ,...,,,..., −+ mm YYCC , 

3:2001,...,3:1995=m  

Variables to be forecast (Y): price inflation; interest rates; exchange-rate growth 

Sample eq. (3) h−4:1978 , 2:2001,...,2:1995=h  n−4:1979 , 2:2001,...,2:1995=n  

Sample eq. (4) h−4:1978 , 2:2001,...,2:1995=h  n−4:1979 , 3:2001,...,3:1995=n  

Information set 
hh YYCC ,...,,,..., 4:784:78 , 

2:2001,...,2:1995=h  

nn YYCC ,...,,,..., 4:7914:79 + , 

2:2001,...,2:1995=n  

 a For each type of recursive model (distinguished by time indices s, h, m, and n), the table gives the 
estimation samples and the information set that are used in each forecasting recursion. For example, if Y is GDP 
growth (top panel of the table) and C the forward-looking index (right column of top panel), then the first 
recursion estimates equation (3) over the sample 1979:4−1995:2 and equation (4) over 1979:4−1995:3. The 
available information set in this recursion contains GDP growth up to and including 1995:2 and BTS data (in the 
form of the forward-looking index) up to and including 1995:4. The forward-looking index has fewer 
observations than the coincident index due to differences in lag structures, procedures for initial values, etc in the 
DFM. 
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Table 3 

Residual diagnostics for GDP-growth equations in bivariate DFM-based VAR models a 

Endogenous VAR variables Autocorr. Heterosced. Stability 

Coincident index, consecutive quarterly GDP growth 0.06 0.26 0.02 

Coincident index, four-quarter GDP growth 0.58 0.52 0.02 

Forward-looking index, consecutive quarterly GDP growth 0.10 0.78 0.02 

Forward-looking index, four-quarter GDP growth 0.14 0.62 0.04 

 a All numbers are p values. The test against autocorrelation is the Lagrange-multiplier (LM) test of fifth 
order autocorrelation. The test against heteroscedasticity is the LM test of fourth order ARCH effects 
(autoregressive conditional heteroscedasticity). The parameter stability test is Chow’s breakpoint test of a mid-
sample one-off break. All tests are computed as F tests. The orders of the LM tests are the same as they are 
automatically chosen by the PcGive software package. For further details , see Doornik and Hendry (1997), 
Chapter 10, Sections 10.8 and 10.9. 
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Table 4 

Forecast-error analysis  for bivariate DFM-based VAR models : GDP growtha 

 RMSE MAE RMedSE MedAE Theil’s U 

VAR variables: coincident index, consecutive quarterly GDP growth 

One-quarter 0.52 0.42 0.33 0.33 0.60 (9) 

Two-quarter 0.53 0.42 0.32 0.32 0.61 (11) 

Four-quarter 0.69 0.56 0.48 0.48 0.76 (16) 

Eight-quarter 0.67 0.58 0.60 0.60 0.70 (14) 

VAR variables: coincident index, four-quarter GDP growth 

One-quarter 0.98 0.79 0.59 0.59 0.31 (1) 

Two-quarter 1.14 0.93 0.71 0.71 0.36 (4) 

Four-quarter 1.80 1.58 1.65 1.64 0.57 (6) 

Eight-quarter 2.09 1.96 2.05 2.05 0.60 (9) 

VAR variables: forward-looking index, consecutive quarterly GDP growth 

One-quarter 0.49 0.35 0.27 0.27 0.57 (6) 

Two-quarter 0.50 0.37 0.28 0.28 0.57 (6) 

Four-quarter 0.62 0.47 0.41 0.41 0.69 (13) 

Eight-quarter 0.71 0.60 0.62 0.61 0.75 (15) 

VAR variables: forward-looking index, four-quarter GDP growth 

One-quarter 1.04 0.81 0.71 0.71 0.34 (2) 

Two-quarter 1.11 0.87 0.79 0.79 0.35 (3) 

Four-quarter 1.59 1.28 1.19 1.19 0.50 (5) 

Eight-quarter 2.21 2.08 2.16 2.16 0.63 (12) 

 a Columns one and two give conventional root mean-squared errors (RMSEs) and mean absolute errors 
(MAEs). Columns three and four contain median-based RMSEs and MAEs (RMedSEs and MedAEs). Column 
five gives Theil’s U, which equals a scale-adjusted RMSE. Numbers within parentheses in this column are 
rankings. 
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Table 5 

Alternative forecasts of GDP growth: relative RMSEs for co incident index vs. unfiltered BTS variablesa 

 One-quarter Two-quarter Four-quarter 

Consecutive quarterly GDP growth 

Median 1.15 (1.16) 1.07 (1.07) 1.03 (1.03) 

Mean 1.16 (1.17) 1.08 (1.08) 1.02 (1.03) 

Best one-quarter 0.93 (0.93) 0.99 (0.99) 0.99 (0.99) 

Best two-quarter 1.03 (1.03) 0.93 (0.93) 0.97 (0.97) 

Best four-quarter 1.01 (1.04) 1.00 (0.99) 0.84 (0.85) 

Four-quarter GDP growth 

Median 1.23 (1.20) 1.24 (1.24) 1.08 (1.07) 

Mean 1.25 (1.22) 1.25 (1.23) 1.08 (1.08) 

Best one-quarter 0.96 (0.96) 1.19 (1.19) 1.09 (1.09) 

Best two-quarter 1.06 (1.07) 0.89 (0.92) 0.77 (0.79) 

Best four-quarter 1.06 (1.07) 0.89 (0.92) 0.77 (0.79) 

 a All numbers are relative RMSEs. The models that make use of the common-factor index appear in the 
denominator so that numbers greater (smaller) than unity mean that the models based on the common factor 
outperform (are outperformed by) the models based on the unfiltered BTS variables. In the rows labelled 
“Median” and “Mean” the RMSEs of the models based on the unfiltered BTS variables are central-tendency 
moments of empirical distributions. The distributions are generated from the forecasts of all possible VAR 
models of dimension five or less (including the variable to be forecast) using the feasible set of BTS variables 
outlined in Table 1. In the rows “Best x-quarter” the RMSEs of the models based on the unfiltered BTS variables 
are optimised such that they are at their minima at the x-quarter horizon (again making use of the empirical 
distributions). The numbers in brackets are results that condition the forecasting models on satisfying certain 
residual diagnostics criteria (see the text and Table 3 for details). The shares of the models that are excluded 
when subjected to the residual diagnostics criteria are 20.4 percent in the case of consecutive quarterly GDP 
growth and 31.1 percent in the case of four-quarter GDP growth. The lag lengths of the VARs are determined by 
minimising the BIC (see the text for details). 
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Table 6 

Alternative forecasts of GDP growth: relative RMSEs for forward-looking index vs. unfiltered BTS variablesa 

 One-quarter Two-quarter Four-quarter 

Consecutive quarterly GDP growth 

Median 1.20 (1.20) 1.12 (1.12) 1.08 (1.08) 

Mean 1.19 (1.20) 1.12 (1.12) 1.08 (1.09) 

Best one-quarter 1.08 (1.09) 1.05 (1.03) 0.98 (1.14) 

Best two-quarter 1.10 (1.10) 1.01 (1.01) 1.14 (1.14) 

Best four-quarter 1.10 (1.20) 1.06 (1.16) 0.94 (1.02) 

Four-quarter GDP growth 

Median 1.23 (1.23) 1.27 (1.28) 1.13 (1.13) 

Mean 1.23 (1.23) 1.28 (1.28) 1.13 (1.13) 

Best one-quarter 1.11 (1.11) 1.14 (1.14) 0.96 (0.96) 

Best two-quarter 1.11 (1.11) 1.14 (1.14) 0.96 (0.96) 

Best four-quarter 1.11 (1.11) 1.15 (1.15) 0.95 (0.95) 

 a All numbers are relative RMSEs. The models that make use of the common-factor index appear in the 
denominator so that numbers greater (smaller) than unity mean that the models based on the common factor 
outperform (are outperformed by) the models based on the unfiltered BTS variables. In the rows labelled 
“Median” and “Mean” the RMSEs of the models based on the unfiltered BTS variables are central-tendency 
moments of empirical distributions. The distributions are generated from the forecasts of all possible VAR 
models of dimension five or less (including the variable to be forecast) using the feasible set of BTS variables 
outlined in Table 1. In the rows “Best x-quarter” the RMSEs of the models based on the unfiltered BTS variables 
are optimised such that they are at their minima at the x-quarter horizon (again making use of the empirical 
distributions). The numbers in brackets are results that condition the forecasting models on satisfying certain 
residual diagnostics criteria (see the text and Table 3 for details). The shares of the models that are excluded 
when subjected to the residual diagnostics criteria are 9.0 percent in the case of consecutive quarterly GDP 
growth and 5.0 percent in the case of four-quarter GDP growth. The lag lengths of the VARs are determined by 
minimising the BIC (see the text for details). 
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Table 7 

Alternative forecasts of GDP growth: relative RMSEs for coincident index vs. macro variablesa 

 One-quarter Two-quarter Four-quarter Eight-quarter 

Consecutive quarterly GDP growth 

Median 1.23 (1.22) 1.09 (1.03) 0.91 (0.98) 0.87 (0.73) 

Mean 1.22 (1.19) 1.09 (1.04) 0.92 (0.98) 0.86 (0.80) 

Best one-quarter 1.00 (1.00) 0.96 (0.96) 0.93 (0.93) 0.94 (0.94) 

Best two-quarter 1.25 (1.00) 0.95 (0.96) 0.98 (0.93) 0.70 (0.94) 

Best four-quarter 1.25 (1.24) 1.11 (1.05) 0.86 (0.91) 0.87 (0.88) 

Best eight-quarter 1.30 (1.30) 1.14 (1.15) 1.06 (1.06) 0.67 (0.67) 

Four-quarter GDP growth 

Median 1.27 (1.26) 1.21 (1.20) 0.92 (0.92) 0.75 (0.76) 

Mean 1.28 (1.27) 1.21 (1.21) 0.93 (0.95) 0.76 (0.77) 

Best one-quarter 1.16 (1.16) 1.09 (1.09) 0.93 (0.93) 0.86 (0.86) 

Best two-quarter 1.23 (1.23) 1.08 (1.08) 0.84 (0.84) 0.84 (0.84) 

Best four-quarter 1.31 (1.23) 1.19 (1.08) 0.79 (0.84) 0.82 (0.84) 

Best eight-quarter 1.30 (1.41) 1.26 (1.27) 0.93 (1.10) 0.60 (0.63) 

 a All numbers are relative RMSEs. The models that make use of the common-factor index appear in the 
denominator so that numbers greater (smaller) than unity mean that the models based on the common factor 
outperform (are outperformed by) the models based on the macro variables. In the rows labelled “Median” and 
“Mean” the RMSEs of the models based on the macro variables are central-tendency moments of empirical 
distributions. The distributions are generated from the forecasts of all possible VAR models of dimension five or 
less (including the variable to be forecast) using the following eight macro variables (in addition to GDP 
growth): inflation according to headline CPI and the underlying measure UND1X; effective exchange-rate 
growth; unemployment; employment growth; short- and long-term interest rates; wage inflation. In the rows 
“Best x-quarter” the RMSEs of the models based on the macro variables are optimised such that they are at their 
minima at the x-quarter horizon (again making use of the empirical distributions). The numbers in brackets are 
results that condition the forecasting models on satisfying certain residual diagnostics criteria (see the text and 
Table 3 for details). The shares of the models that are excluded when subjected to the residual diagnostics 
criteria are 88.4 percent in the case of consecutive quarterly GDP growth and 53.7 percent in the case of four-
quarter GDP growth. The lag lengths of the VARs are determined by minimising the BIC (see the text for 
details). 
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Table 8 

Alternative forecasts of GDP growth: relative RMSEs for forward-looking index vs. macro variablesa 

 One-quarter Two-quarter Four-quarter Eight-quarter 

Consecutive quarterly GDP growth 

Median 1.31 (1.30) 1.16 (1.10) 1.01 (1.10) 0.82 (0.69) 

Mean 1.29 (1.26) 1.15 (1.10) 1.02 (1.09) 0.81 (0.75) 

Best one-quarter 1.06 (1.06) 1.02 (1.02) 1.04 (1.04) 0.89 (0.89) 

Best two-quarter 1.32 (1.06) 1.01 (1.02) 1.09 (1.04) 0.66 (0.89) 

Best four-quarter 1.32 (1.32) 1.18 (1.11) 0.96 (1.01) 0.82 (0.83) 

Best eight-quarter 1.38 (1.38) 1.21 (1.21) 1.18 (1.18) 0.63 (0.64) 

Four-quarter GDP growth 

Median 1.20 (1.19) 1.24 (1.23) 1.04 (1.05) 0.71 (0.72) 

Mean 1.20 (1.20) 1.25 (1.24) 1.05 (1.07) 0.72 (0.73) 

Best one-quarter 1.10 (1.10) 1.12 (1.12) 1.05 (1.05) 0.81 (0.81) 

Best two-quarter 1.16 (1.16) 1.11 (1.11) 0.95 (0.95) 0.79 (0.79) 

Best four-quarter 1.23 (1.16) 1.23 (1.11) 0.89 (0.95) 0.78 (0.79) 

Best eight-quarter 1.23 (1.33) 1.29 (1.31) 1.05 (1.25) 0.57 (0.60) 

 a All numbers are relative RMSEs. The models that make use of the common-factor index appear in the 
denominator so that numbers greater (smaller) than unity mean that the models based on the common factor 
outperform (are outperformed by) the models based on the macro variables. In the rows labelled “Median” and 
“Mean” the RMSEs of the models based on the macro variables are central-tendency moments of empirical 
distributions. The distributions are generated from the forecasts of all possible VAR models of dimension five or 
less (including the variable to be forecast) using the following eight macro variables (in addition to GDP 
growth): inflation according to headline CPI and the underlying measure UND1X; effective exchange-rate 
growth; unemployment; employment growth; short- and long-term interest rates; wage inflation. In the rows 
“Best x-quarter” the RMSEs of the models based on the macro variables are optimised such that they are at their 
minima at the x-quarter horizon (again making use of the empirical distributions). The numbers in brackets are 
results that condition the forecasting models on satisfying certain residual diagnostics criteria (see the text and 
Table 3 for details). The shares of the models that are excluded when subjected to the residual diagnostics 
criteria are 88.4 percent in the case of consecutive quarterly GDP growth and 53.7 percent in the case of four-
quarter GDP growth. The lag lengths of the VARs are determined by minimising the BIC (see the text for 
details). 
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Table 9 

Alternative forecasts of GDP growth: relative RMSEs for coincident index vs. popular summary indicesa 

 One-quarter Two-quarter Four-quarter 

Consecutive quarterly GDP growth 

BTS confidence indicator, manufacturing 1.02 0.98 0.93 

BTS confidence indicator, construction 1.17 1.17 0.96 

Consumer survey, own personal economy † 1.04 1.06 0.90 

Consumer survey, whole economy † 1.06 1.06 0.94 

Consumer survey, unemployment 1.08 1.09 1.04 

Consumer survey, backward-looking† 1.08 1.08 0.91 

Activity index (consecutive quarterly change) 1.12 1.08 0.96 

Four-quarter GDP growth 

BTS confidence indicator, manufacturing 1.20 1.15 0.94 

BTS confidence indicator, construction 1.27 1.23 1.03 

Consumer survey, own personal economy † 1.15 1.05 0.82 

Consumer survey, whole economy  1.14 1.08 0.91 

Consumer survey, unemployment 1.15 1.18 1.04 

Consumer survey, backward-looking† 1.18 1.11 0.89 

Activity index (four-quarter change) 1.17 1.05 0.98 

 a All numbers are relative RMSEs. The models that make use of the common-factor index appear in the 
denominator so that numbers greater (smaller) than unity mean that the models based on the common factor 
outperform (are outperformed by) the models based on the other popular summary indices. † means that the 
models based on the other popular summary indices do not pass the residual diagnostics criteria (see the text and 
Table 3 for details). All models are bivariate VARs, whose lag lengths have been determined using the BIC (see 
the text for details). 
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Table 10 

Alternative forecasts of GDP growth: relative RMSEs for forward-looking index vs. popular summary indicesa 

 One-quarter Two-quarter Four-quarter 

Consecutive quarterly GDP growth 

BTS confidence indicator, manufacturing 1.08 1.04 1.03 

BTS confidence indicator, construction 1.24 1.24 1.06 

Consumer survey, own personal economy † 1.10 1.12 1.00 

Consumer survey, whole economy † 1.12 1.12 1.05 

Consumer survey, unemployment 1.14 1.16 1.16 

Consumer survey, backward-looking† 1.14 1.14 1.02 

Activity index (consecutive quarterly change) 1.18 1.14 1.06 

Four-quarter GDP growth 

BTS confidence indicator, manufacturing 1.13 1.18 1.07 

BTS confidence indicator, construction 1.19 1.26 1.16 

Consumer survey, own personal economy † 1.09 1.08 0.92 

Consumer survey, whole economy  1.08 1.11 1.03 

Consumer survey, unemployment 1.09 1.21 1.18 

Consumer survey, backward-looking† 1.12 1.14 1.01 

Activity index (four-quarter change) 1.11 1.08 1.11 

 a All numbers are relative RMSEs. The models that make use of the common-factor index appear in the 
denominator so that numbers greater (smaller) than unity mean that the models based on the common factor 
outperform (are outperformed by) the models based on the other popular summary indices. † means that the 
models based on the other popular summary indices do not pass the residual diagnostics criteria (see the text and 
Table 3 for details). All models are bivariate VARs, whose lag lengths have been determined using the BIC (see 
the text for details). 
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Table 11 

Forecasts of other macro variables: relative RMSEs , coincident index and data in consecutive quarterly growtha 

 Inflation Exch. rate Unemploy. Employment Interest rate Wages  

 One Two One Two One Two One Two One Two One Two 

Unfiltered 

BTS 

1.34 

1.37 

0.79 

1.51 

1.55 

0.79 

1.00 

1.00 

0.00 

0.99 

0.99 

0.00 

1.21 

1.22 

0.38 

1.17 

1.18 

0.38 

1.10 

1.10 

0.08 

1.11 

1.11 

0.08 

1.09 

1.14 

0.34 

0.98 

1.01 

0.34 

1.09 

1.08 

0.19 

1.07 

1.07 

0.19 

Macro 

variables 

1.13 

1.11 

0.57 

1.14 

1.06 

0.57 

1.06 

1.06 

0.02 

1.03 

1.02 

0.02 

1.05 

0.95 

0.82 

1.03 

1.03 

0.82 

1.21 

1.21 

0.02 

1.07 

1.07 

0.02 

1.04 

1.04 

0.02 

0.87 

0.87 

0.02 

0.84 

0.85 

0.38 

0.99 

1.00 

0.38 

CI, manuf. 0.97 0.91 0.99 0.98 0.96†† 0.96†† 0.96 0.96 1.07 1.11 1.17 1.16 

CI, constr. 1.17†† 1.37†† 1.03 1.01 0.96†† 0.96†† 0.96 0.96 0.98 0.99 1.00 1.06 

CS, own 1.17†† 1.34†† 1.09 1.08 0.92†† 0.88†† 0.92 0.88 0.98 1.03 1.03 1.10 

CS, whole 1.13†† 1.29†† 1.00 1.00 0.96†† 0.92†† 0.92 0.92 0.98 1.01 0.96 1.03 

CS, unemp. 1.17†† 1.40†† 1.01 1.01 1.12†† 1.04†† 1.12 1.04 1.07 1.08 1.08 1.13 

CS, back 1.20 1.40 1.11 1.09 0.92†† 0.94†† 0.92 0.94 1.02 1.06 1.11 1.12 

Activity in. 1.17 1.23 1.04 1.03 0.85 0.84 0.85 0.84 1.09 1.11 0.90 0.97 

 a All numbers (except in italics) are relative RMSEs. The models that make use of the common-factor index 
appear in the denominator so that numbers greater (smaller) than unity mean that the models based on the 
common factor outperform (are outperformed by) the rival models. To save space, the results for headline CPI 
inflation and the short-term interest rate have been left out (but are available upon request). Column “One” 
evaluates forecasts one quarter ahead. Column “Two” evaluates forecasts two quarters ahead. The (nominator of 
the) relative RMSEs in the rows “Unfiltered BTS” and “Macro variables” are based on medians of empirical 
distributions (see the Notes of Tables 5–6 and Tables 7–8 for details). Numbers in bold in those rows are relative 
RMSEs  that condition the forecasting models on satisfying certain residual diagnostics criteria (see the text and 
Table 3 for details). Numbers in italics in those rows show the shares of the rival models that are excluded when 
subjected to the residual diagnostics criteria. The remaining rows are comparisons with other popular summary 
indices (see the Notes of Tables 9–10). † means that the models based on the common factor do not pass the 
residual diagnostics criteria; †† means that the rival models do not pass the residual diagnostics criteria; ††† 
means that neither the models based on the common factor nor the rival models pass the residual diagnostics 
criteria. 
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Table 12 

Forecasts of other macro variables: relative RMSEs, coincident index and data in four-quarter growtha 

 Inflation Exch. rate Unemploy. Employment Interest rate Wages  

 One Two One Two One Two One Two One Two One Two 

Unfiltered 

BTS 

0.94 

0.92 

0.62 

0.92 

0.89 

0.62 

1.06 

† 

1.00 

1.14 

† 

1.00 

1.21 

1.22 

0.38 

1.17 

1.18 

0.38 

1.19 

1.20 

0.29 

1.24 

1.25 

0.29 

1.09 

1.14 

0.34 

0.98 

1.01 

0.34 

1.06 

1.07 

0.39 

1.18 

1.18 

0.39 

Macro 

variables 

0.98 

0.97 

0.22 

0.97 

0.97 

0.22 

1.13 

† 

0.93 

1.29 

† 

0.93 

1.06 

0.96 

0.92 

1.09 

1.03 

0.92 

1.11 

1.13 

0.81 

1.19 

1.18 

0.81 

1.11 

1.11 

0.44 

1.01 

1.01 

0.44 

0.87 

0.87 

0.40 

0.86 

0.88 

0.40 

CI, manuf. 1.05 0.97 1.06††† 1.11††† 1.04†† 1.02†† 1.24 1.20 1.07 1.11 1.07 1.06 

CI, constr. 0.83 0.72 1.09††† 1.15††† 1.04†† 1.02†† 1.20 1.17 0.98 0.99 0.99 1.02 

CS, own 0.95 0.89 1.19††† 1.27††† 1.00†† 0.93†† 1.06 1.10 0.98 1.03 0.93 0.98 

CS, whole 0.95 0.91 1.08††† 1.15††† 1.04†† 0.98†† 1.14†† 1.05†† 0.98 1.01 0.93 0.96 

CS, unemp. 0.98 0.86 1.07††† 1.14††† 1.21†† 1.11†† 1.19†† 1.25†† 1.07 1.08 1.00 1.05 

CS, back 0.93 0.86 1.21††† 1.29††† 1.00†† 1.00†† 1.12 1.08 1.02 1.06 0.99 1.04 

Activity in. 1.05 1.09 0.87††† 0.94††† 0.92 0.89 1.17 1.25 1.09 1.11 0.89 0.89 

 a All numbers (except in italics) are relative RMSEs. The models that make use of the common-factor index 
appear in the denominator so that numbers greater (smaller) than unity mean that the models based on the 
common factor outperform (are outperformed by) the rival models. To save space, the results for headline CPI 
inflation and the short-term interest rate have been left out (but are available upon request). Column “One” 
evaluates forecasts one quarter ahead. Column “Two” evaluates forecasts two quarters ahead. The (nominator of 
the) relative RMSEs in the rows “Unfiltered BTS” and “Macro variables” are based on medians of empirical 
distributions (see the Notes of Tables 5–6 and Tables 7–8 for details). Numbers in bold in those rows are relative 
RMSEs that condition the forecasting models on satisfying certain residual diagnostics criteria (see the text and 
Table 3 for details). Numbers in italics in those rows show the shares of the rival models that are excluded when 
subjected to the residual diagnostics criteria. The remaining rows are comparisons with other popular summary 
indices (see the Notes of Tables 9–10). † means that the models based on the common factor do not pass the 
residual diagnostics criteria; †† means that the rival models do not pass the residual diagnostics criteria; ††† 
means that neither the models based on the common factor nor the rival models pass the residual diagnostics 
criteria. 
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Table 13 

Forecasts of other macro variables: relative RMSEs, forward-looking index and data in consecutive quarterly 
growtha 

 Inflation Exch. Rate Unemploy. Employment Interest rate Wages  

 One Two One Two One Two One Two One Two One Two 

Unfiltered 

BTS 

1.18 

1.18 

0.49 

1.21 

1.17 

0.49 

0.99 

0.99 

0.03 

0.96 

0.96 

0.03 

1.15 

† 

0.23 

1.10 

† 

0.23 

1.02 

1.01 

0.03 

1.04 

1.04 

0.03 

1.12 

1.13 

0.60 

0.91 

0.94 

0.60 

0.87 

0.87 

0.03 

1.00 

1.00 

0.03 

Macro 

variables 

1.09 

1.08 

0.57 

1.14 

1.06 

0.57 

1.03 

1.03 

0.02 

0.98 

0.98 

0.02 

1.13 

† 

0.82 

1.10 

† 

0.82 

1.01 

1.01 

0.02 

0.97 

0.97 

0.02 

1.04 

1.04 

0.02 

0.83 

0.83 

0.02 

0.65 

0.66 

0.38 

0.89 

0.89 

0.38 

CI, manuf. 0.94 0.91 0.96 0.94 0.96††† 0.96††† 0.98 0.95 1.07 1.06 0.93 0.94 

CI, constr. 1.13†† 1.37†† 1.00 0.96 0.96††† 0.96††† 1.00 1.00 0.98 0.94 0.86†† 0.90†† 

CS, own 1.13†† 1.34†† 1.06 1.02 0.92††† 0.88††† 0.99 0.93 0.98 0.98 0.82 0.87 

CS, whole 1.10†† 1.29†† 0.97 0.96 0.96††† 0.92††† 1.04 1.04 0.98 0.96 0.81 0.84 

CS, unemp. 1.13†† 1.40†† 0.98 0.96 1.12††† 1.04††† 0.94 0.97 1.07 1.02 0.88 0.93 

CS, back 1.16 1.40 1.07 1.03 0.92††† 0.94††† 0.99 0.93 1.02 1.01 0.87 0.91 

Activity in. 1.13 1.23 1.01 0.98 0.85† 0.84† 0.96 0.91 1.09 1.06 0.78 0.78 

 a All numbers (except in italics) are relative RMSEs. The models that make use of the common-factor index 
appear in the denominator so that numbers greater (smaller) than unity mean that the models based on the 
common factor outperform (are outperformed by) the rival models. To save space, the results for headline CPI 
inflation and the short-term interest rate have been left out (but are available upon request). Column “One” 
evaluates forecasts one quarter ahead. Column “Two” evaluates forecasts two quarters ahead. The (nominator of 
the) relative RMSEs in the rows “Unfiltered BTS” and “Macro variables” are based on medians of empirical 
distributions (see the Notes of Tables 5–6 and Tables 7–8 for details). Numbers in bold in those rows are relative 
RMSEs that condition the forecasting models on satisfying certain residual diagnostics criteria (see the text and 
Table 3 for details). Numbers in italics in those rows show the shares of the rival models that are excluded when 
subjected to the residual diagnostics criteria. The remaining rows are comparisons with other popular summary 
indices (see the Notes of Tables 9–10). † means that the models based on the common factor do not pass the 
residual diagnostics criteria; †† means that the rival models do not pass the residual diagnostics criteria; ††† 
means that neither the models based on the common factor nor the rival models pass the residual diagnostics 
criteria. 



 46 

Table 14 

Forecasts of other macro variables: relative RMSEs, forward-looking index and data in four-quarter growtha 

 Inflation Exch. rate Unemploy. Employment Interest rate Wages  

 One Two One Two One Two One Two One Two One Two 

Unfiltered 

BTS 

1.00 

1.00 

0.37 

1.86 

0.86 

0.37 

1.06 

† 

0.98 

1.06 

† 

0.98 

1.15 

† 

0.23 

1.10 

† 

0.23 

1.17 

† 

0.29 

1.22 

† 

0.29 

1.12 

1.13 

0.60 

0.91 

0.94 

0.60 

1.00 

1.00 

0.15 

1.01 

1.01 

0.15 

Macro 

variables 

1.00 

1.00 

0.22 

0.97 

0.97 

0.22 

1.10 

† 

0.93 

1.16 

† 

0.93 

1.15 

† 

0.92 

1.17 

† 

0.92 

1.05 

† 

0.81 

1.10 

† 

0.81 

1.11 

1.11 

0.44 

0.96 

0.96 

0.44 

0.76 

0.76 

0.40 

0.76 

0.77 

0.40 

CI, manuf. 1.07 0.97 1.03††† 0.99††† 1.04††† 1.02††† 1.17† 1.11† 1.07 1.06 0.91 1.03 

CI, constr. 0.85 0.72 1.06††† 1.03††† 1.04††† 1.02††† 1.14† 1.08† 0.98 0.94 0.77 0.95 

CS, own 0.98 0.89 1.16††† 1.14††† 1.00††† 0.93††† 1.01† 1.02† 0.98 0.98 0.80 0.98 

CS, whole 0.98 0.91 1.05††† 1.03††† 1.04††† 0.98††† 1.08††† 0.97††† 0.98 0.96 0.74 0.92 

CS, unemp. 1.00 0.86 1.05††† 1.02††† 1.21††† 1.11††† 1.13††† 1.15††† 1.07 1.02 0.84 1.01 

CS, back 0.95 0.86 1.18††† 1.15††† 1.00††† 1.00††† 1.06† 1.00† 1.02 1.01 0.86 1.00 

Activity in. 1.07 1.09 0.85††† 0.84††† 0.92† 0.89† 1.11† 1.15† 1.09 1.06 0.69 0.86 

 a All numbers (except in italics) are relative RMSEs. The models that make use of the common-factor index 
appear in the denominator so that numbers greater (smaller) than unity mean that the models based on the 
common factor outperform (are outperformed by) the rival models. To save space, the results for headline CPI 
inflation and the short-term interest rate have been left out (but are available upon request). Column “One” 
evaluates forecasts one quarter ahead. Column “Two” evaluates forecasts two quarters ahead. The (nominator of 
the) relative RMSEs in the rows “Unfiltered BTS” and “Macro variables” are based on medians of empirical 
distributions (see the Notes of Tables 5–6 and Tables 7–8 for details). Numbers in bold in those rows are relative 
RMSEs that condition the forecasting models on satisfying certain residual diagnostics criteria (see the text and 
Table 3 for details). Numbers in italics in those rows show the shares of the rival models that are excluded when 
subjected to the residual diagnostics criteria. The remaining rows are comparisons with other popular summary 
indices (see the Notes of Tables 9–10). † means that the models based on the common factor do not pass the 
residual diagnostics criteria; †† means that the rival models do not pass the residual diagnostics criteria; ††† 
means that neither the models based on the common factor nor the rival models pass the residual diagnostics 
criteria. 
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Fig. 1. One-sided estimates of common factors using model (1)−(2) and survey variables in Table 1. 
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