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Abstract

The Swedish unemployment rate is forecast using three time series methods: the ARIMA, transfer
function and VAR models. Within this context the choice of modelling strategy is discussed. It is
found that the forecasting performance of VAR models is improved by explicitly taking account of
cointegration between the variables in the model, despite the fact that unemployment is not co-
integrated. However, the more parsimonious ARIMA and transfer function models have lower
RMSE for all forecasting horizons. It is also found that the additional variables in the VAR models
are important for predicting the turning points in the unempioyment rate.






1. Introduction

The aim of this paper is to study how the choice of model and modelling strategy affects
the forecasting performance of time series methods. The variable we study is the
Swedish unemployment rate. We have chosen this variable since it is an important policy
variable. Traditionally, the goals of economic policy are formulated as low unemploy-
ment rate, low inflation and a high and stable growth rate. The unemployment rate dis-
plays two sharp turning points during the evaluation period 1979 to 1990 and can thus be
expected to be relatively hard to forecast and provide a challenge for the forecasting
methods.

We consider three overlapping model classes: ARIMA-models, transfer function models
and VAR-models. A priori we expect the VAR-models to do better than ARIMA and
transfer function models since VAR's allow for the interdependence we expect to find
among economic variables. The class of VAR-models encompass ARIMA and transfer
function models, but the noise is modelled in a much less sophisticated and less parsi-
monious manner in the VAR-framework. Because of this and the differences in mod-
elling strategy, we would not expect the selected ARIMA and transfer function models to
be special cases of the selected VAR-models.

ARIMA and transfer function model building is by now fairly standard and we follow
the procedures outlined by Box and Jenkins [1976].

VAR-models are frequently used in the economic literature and have been found to fore-
cast well, especially in the Bayesian formulation (Litterman [1986a]). The issue of model
building strategy is far less settled for this type of model than for ARIMA and transfer
function models. In particular, we try to shed some light on how the lag length should be
determined and how cointegrated and integrated variables should be treated.

We restrict ourselves to the classical framework and do not consider Bayesian formula-
tions of the three model classes. Kadiyala and Karlsson [1990] study how different ways
of parameterising the prior beliefs affect the forecasting performance of VAR-models.
Nor do we consider the vector ARIMA (VARIMA) model of Tiao and Box [1981]. Oller
[1985], using data on the Finnish economy, finds that VARIMA-models provide better
forecasts than univariate ARIMA-models.



2. The Data

Our data set consists of quarterly observations for the period 64:1-90:4 for unempioy-

ment, the dependent variable, and five explanatory variables shown in Figure 1:

UNEMP

LIPSWE

LCPI

LRGDP

LRLABC

is the officially reported unemployment rate in Sweden according to the
AKU (work force survey) conducted by Statistics Sweden. The series is not
seasonally adjusted. The definition of unemployment was changed in the
first quarter of 1987 (87:1). It has been estimated that this change of defini-
tion decreased the unemployment rate by one half percentage point. To
make the series consistent over time we decided to add 0.5 percentage
points to the observations beginning with 87:1. The series shows some
cyclical pattern as well as a seasonal pattern.

is the logarithm of the index of the Swedish industrial production. The se-
ries is shown together with a four quarter mowing average. The moving av-
erage wiil be used as the explanatory variable in the transfer function

model. We note both a cyclical pattern and a very strong seasonal pattern
with a marked dip in the third quarter corresponding to the industrial vaca-
tion period. It should also be noted that the seasonal pattern differs from
that of the unemployment series. If a large portion of unemployment is in
the industrial sector, decreased industrial production would lead to increased
unemployment.

is the logarithm of the consumer price index. The inclusion is based on a
Phillips curve argument.

is the logarithm of real GDP. LRGDP has a seasonal pattern that resembles
that of LIPSWE but the third quarter vacation 'dip' is not so deep as for in-
dustrial production. Even though LRGDP and LIPSWE series follow the
same general trend and seasonal pattern, LRGDP may be a better explana-
tory variable than LIPSWE if a large part of unemployment comes from the
non-industrial sector. Since the trade and service sector has increased their
share of the employed over time this may be an interesting assumption to
test.

is the logarithm of the real labor cost. The positive trend in the series is
broken in 1976. We may suspect that increased labor cost would lead to in-
creased unemployment.



Figure 1. The Data
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The vertical bar marks the end of the identification period.

*)The dashed line is the unadjusted series. }The dashed line is a four quarter moving average.




LIPOECD is the logarithm of the OECD index of industrial production. The series is
seasonally adjusted. This series is used as an international leading indicator
of economic activity.

All series except real GDP are available on a monthly basis. For these series we use a
three month average as our quarterly data. The data on real GDP prior to 70:1 and the
labor cost prior to 68:1 was kindly provided by Jan EkI6f (see Eklof [1990] for data
sources). The remainder of the data was coilected from the OECD Main Economic
Indicator database.

2.1. Unit Roots

As a first step in the specification search, unit-root tests were performed for all variables.
The bounded variation of the unemployment rate impiies that it can not contain a unit
root!. We do, however, report the results of unit root tests for UNEMP. Even though the
true data generating process (DGP) does not contain a unit root, a first difference might
be a good approximation in the short run and useful for forecasting purposes.

The traditional Dickey-Fuller tests, v, and T(5 —1) (Fuller [1976], Dickey and Fuller
[1979)), are reported in Table 1. Since the variables display trends a time-trend was in-
cluded in the Dickey-Fuller regressions:

P
Yo=p+Bt+py_, + & 0.0—i = Yiciz1) + &,
i=1
Since most of the variables display seasonality, the tests were also performed using

Dickey-Fuller regressions that included seasonal dummies. These tests are also reported
in Table 1.

Critical values, conditional on the standardized trend, from De Jong et.al. [1988] were
used. The standardized trend is estimated under the null of a unit root as & = §/5,. The
estimated standardized drift is small for all the variables and the conclusions are the same
if we use the critical values from Fuller {1976], which were obtained under the assump-
tion that the DGP contains no deterministic trend. As pointed out by Sims and Uhlig
[1991] the 7, statistic conveys the same information about the shape of the likelihood as
the conventional ¢ statistic even when the DGP is non-stationary. In a Bayesian setting

lGiven the maintained hypothesis that the unemployment rate can be represented as a stochastic linear
process, the presence of a unit root in the autoregressive polynomial implies that the variance is infinite or
tends to infinity with ¢, depending on how the process is started up. This is clearly contradicted by the
unemployment rate being bounded below by 0 and above by 100.



Table 1. Dickey-Fuller Test for Unit Roots

Viriabia Constant Term, Trend Seasonal Dummies, Trend

Lags 5 T Tp-1) 5§ JLags TOTp-1) b
UNEMP 4 0.690 —3.280* —50.243% —0.004) 2 0.829 —1.948 —9.599 0.000
LCPI 0 00993 —0.345 -—0.441 0.033] 0 0.997 —0.151 —0.186 0.034
LRGDP 3 1.061 0.497  0.859 —0.020] 3 1.056 0498 0925 0.026
LRLABC 5 0.552 -3.276" 58.238 —0.005] 0 0.822 -1.972 —10.527 0.005
LIPSWE 5 0.868 —1.787 —46.357% —0.009§ 0 0.959 -0.930 -2.432 0.015
LIPOECD |  0.899 —2.939 —16.572° —0.003|] 1 0.899 —2.865 —16.698" 0.008
VUNEMP 3 0.047 -2.757° —21.840¢ 0.034f| 3  0.191 -2.768 —20.000% 0.060
VLCPI o 0262 -57719 -42.777% o0.011)| 0 0.330 -5.195¢ —38.878% 0.008
VLRGDP 2 2.817 -28.339¢ 117.658 —0.002 2 -2.112 —11.948¢ 185217 0.008
VLRLABC 3 0.235 —3.126" —39.529% —0.046| 0 -0.234 —9.276% —71.581¢ 0.009
VLIPSWE 6 0.032 —3.001° 172.121 0.030§ 0 —0.099 -7.951% —63.754¢ 0.033
VLIPOECD | 0 0.605 —3.644% —22.311° 0.003| 0 0.618 —3.526° —22.164% 0.005

Models: y, = i + 87 + py,_) + D100y —Ymimy) + Eandy, = p + Bt + py,_ | +

a0, i=Yi_i_1) + oDy, + anDy, + 3Dy, + €, p is chosen to produce white noise residuals.
The time trend is excluded for tests with differenced data.

a) Denotes significance at the 10% level, b) at the 5% level, c) at the 2.5% level and d) at the 1%
level.

with a diffuse prior or in general for inference based on the likelihood principle one
could use the ordinary critical values from the ¢-distribution as guide lines.

When seasonal dummies are included, the unit root can only be rejected for LIPOECD
and the T(p—1) test at the 10% level. Without seasonal dummies the null of a unit root is
rejected for UNEMP, LRLABC, LIPSWE and LIPOECD.

The unit root is rejected in all cases when the tests are performed on first differences.

In general the investigation of non-stationary roots of the AR-representation should not

be restricted to the root +1 of the AR-polynomial since any root with a modulus of one
will have the same effects on the time series properties, i.e. long memory, infinite vari-
ances and non-normal asymptotic distributions for parameter estimates.

The seasonal difference-operator (1 — B*) is frequently used with quarterly data to ren-
der them stationary and this operator can be factored into

(1-B%Y=( -8B+ B)1 + B?
= (1 = B)(1 + B)(1 — iB)(1 + iB).



It is clear that the difference operator corresponds to four roots with modulus one, I,
—1, i and -, corresponding to the zero frequency, the biannual frequency and the
yearly frequency. Since the roots i and —/ are complex conjugates, and thus indistin-
guishable, they are both interpreted as the yearly frequency.

The testing procedure developed by Hylleberg et.al. [19901 (HEGY) is used here. They
show that any polynomial ¢(B) which is finite valued at the points 6, = {1, —1, i, —i}
can be written as

@(B) = N\\B(1 + B)(1 + B?) — M,B(1 — B)(1 + BY) ¢))
+ N(=iB)(1 = B)(1 + B)(1 — iB) + A(iB)(1 — B)(1 + B)(1 + iB)
+ e*(B)(1 — BY

for ¢*(B) a possibly infinite real valued polynomial. Then \; = 0 if and only if 6, is a
root of ¢(B). A test for \, = 0 is hence a test for §, a root of ¢(B). Since A, and A, must
be complex for ¢(B) to be real valued, we substitute \; = —=, A, = —m,, 2Ny = — 7,
+ imyand 2A, = —m, — i, into (1) to obtain

@(B) = —m,B(1 + B + B + B%) + m,B(1 — B + Bt — B?)
+ (7, + mB)B(l — BY) + ©*(B)(1 — B%

where all the factors are real valued.
If data is assumed to be generated by
eBx, = p, + ¢,

where u, contains a deterministic trend and seasonal components, the tests for §; a root of
@(B) can be carried out as tests on the w-coefficients in

PBYa = MYy T Y T MYy T Ty ot )
where

y1t=(1+B+HZ+B3)xn yL'=—(]‘—B+Bz_BS)x!’
)’3;= *(I_Bz)xr: y4{=(1 —B")I,.

In this setting a test for a unit root (the zero frequency) is a test of =, = 0 against the
stationary alternative 7, < 0, a test for a root —1 (the biannual frequency) is a test of «,
= 0 against the stationary alternative =, < 0 and a test for a root of +i (the yearly fre-
quency) is a test of m; = 7, = 0 against the alternative that not both are zero. The first
two tests can be conducted as ¢-tests and the distributions of the z-statistics for x, and =,




Table 2. HEGY Tests for Seasonal Unit Roots

‘t'-test 'F'-test
Variable Lags ™ Ty L) L TN 7,
UNEMP 1 f-3.280* -0.491 -3.1209 —0.013 4.8684
LcPr o §-1.155 -—s5.5119 -52669 —3.210° | 26.540¢
LRGDP 0 0.497 —0.322 —0.611 —0.503 0.324
LRLABC 7 §-3.276" —3.529¢ —-0.999  —0.472 0.612
LIPSWE 2 1-1.787 0.594 -0.390 —0.238 0.105
LIPOECD o §-2.868 —4.623¢ —-1.695 —6.372° | 24.8679
v ,UNEMP 0 |-3.953¢ -—4324¢ -—go057% —2.728° | 53.846°
VLCPI o [-2518 -6.366% -6.906° -2.590° | 37.508¢
V,.LRGDP o [-2786* -4.227¢ -—s5366¢ —1.754* | 17.764¢
V4LRLABC o |-2.558 -5.2188 -7.3779 —1L.646 | 31.929¢
V,LIPSWE 1 |-2.557 -39771% -6.5529 —4.2799 | 35.216¢
v,LIPOECD o J-4.052¢ -—s5438¢8 -2.813¢ —6.902‘:_' 38.291¢

Model: yo, = p + Bt + %Yy + Toya o F Ty g + Wy Blaibyy,
+ €, p is chosen to produce white noise residuals. The time trend is excluded for
tests with differenced data.

a) Denotes significance at the 10% level, b) at the 5% level, c) at the 2.5% level and
d) at the 1% level. One-sided tests except 7, and T, N7y,

are tabulated in HEGY. The last test can either be conducted as an F-test of the joint null
or as a sequential test where x, = 0 is first tested against the two-sided alternative and
7; = 0 is tested against =, < 0 conditionally on 7, = 0. The distributions of the F-test
and r-tests for r, and =, are also tabulated in HEGY.

The HEGY-tests where conducted with a time trend and seasonal dummies included in
(2). The resuits with only a time trend included are reported in Table 2 and the results
with both time trend and seasonal dummies are reported in Table 3.

When seasonal dummies are included the seasonal roots can be rejected for all variables
except LRGDP and the zero frequency root can not be rejected for any of the variables.

The tests were also run on seasonal differences of all variables. The presence of seasonal
roots was rejected in all cases, but the zero frequency root could not be rejected for
v.,LcPI, V,LRLABC and V ,LIPSWE.

To summarize, allowing for a deterministic season both the Dickey-Fuller and HEGY
tests indicate that LCPI, LRGDP, LRLABC, LIPSWE and LIPOECD have a zero-fre-
quency root. The HEGY tests indicate that LRGDP, in addition to the zero frequency



Table 3. HEGY Tests for Seasonal Unit Roots,

Seasonal Dummies Included
"r'-test 'F'-test
Variable Lags T Ty my Ty TN,

UNEMP 0 §-2.221 —3.419° —5.946% —2.828¢ | 31.841¢
LCPI 0 —1.474  —6.2229 -5.736¢ —-2.869° | 28.4364
LRGDP 0 0.498 —2.368  —2.394 0.229 2.888
LRLABC 0 -1.390  —4.130¢ -5.0988 -2.414 20.2944
LIPSWE 0 {-0.833  —3.439° —4.412° —4.034° | 27.251¢
LIPOECD 0 -2.779  —-4.402¢ —1.667 —6.218° | 24.867¢

V,UNEMP 0 |-3.853¢ -—4.239¢ -7.868¢ —2.620° | 51.063¢
v,LCPI 0 [-2447 -6.143% -6.7000 -2.840° | 352479
v LRGDP 0 |-2753* -—4148% 5505 -—1.691 | 18.416°
v LRLABC 0 |-1613 —so018® -7.394° 2042 | 29.914¢
v LIPSWE 1 |-2432  -3913¢ -6322¢ -4.189¢ | 330779
v ,LIPOECD 0 f-3914? -5257" -2.692 —6.705% | 35.879¢

Model: yy, = p + Bt + Ty, + Fo¥g | + TyYy o + Ty, + Eﬁ’.,eiy‘“_f
+ ayDy, + asDy, + 3Dy, + £, p is chosen to produce white noise residuals. The
time trend is excluded for tests with differenced data.

a) Denotes significance at the 10% level, b) at the 5% level, c) at the 2.5% level and
d) at the 1 % level. One-sided tests except 7, and 13 N7y,

root, has roots on the unit circle at both the seasonal frequencies. It appears as if
UNEMP is well approximated by a difference stationary variable.

2.2, Cointegration

The inference that LCPI, LRGDP, LRLABC, LIPSWE and LIPOECD are integrated at the
zero frequency open up the possibility that they are cointegrated at this frequency. That
is, there exists one or more linear combinations of the variables that do not have a root at
the zero frequency.

The maximum likelihood based procedure of Johansen [1988b] and Johansen and Juselius
[1990] is used to test for cointegration. This involves estimation of the error correction
representation (ECM)

1
VY1 = K + EIIIivY:-i + Hyr—p + et
i=

for the vector y, of m difference stationary variables.



Table 4. Johansen Tests for Cointegration

No. of Cointegrating relations

™ 1 2 3 4 5 6
N 52.054¢  29.861° 15.658 13.692 5.670 1.293
Afvace 118.229%  66.174°  36.313 20.655 6.963 1.293

Estimated Cointegrated Relations (e)

UNEMP 0.009 —0.168 —1.881 —0.320 —0.022 0.024
SUMGDP 1.000 1.000 1.000 1.000 1.000 1.000
LIPOECD -0.901 —1.984 -12.414 2.516 -0.176 —2.888
LIPSWE —-0.803 0.527 56.247 —-3.067 -0.576 5.284
LRLABC —1.831 —1.6634 —65.839 -0.707 —-1.652 —15.723
LCPI 0.528 0.827 36.567 —-1.191 0.108 12.425

Error correction representation estimated with one lag of first differences and seasonal dummies.
a) Denotes significance at the 10% level, b) at the 5% level, c) at the 2.5% level and d) at the 1 %
level. Critical values are from Table Al, T=50, of Jacobson and Larsson [1991].

From the Granger Representation theorem (Engle and Granger [1987]) we know that the
impact matrix II is the zero matrix if and only if the variables are not cointegrated. If the
variables are cointegrated then IT will have reduced rank r < m and can be decomposed
into two m X r matrices « and v, II = ye', where a contains the r linearly independent
cointegrating relations and # is the matrix of adjustment coefficients. Then the transfor-
mation z, = o'y, of the integrated variables is stationary and the ECM can be restated as

71
vy, =g+ EH,-V}’H- +yz, t g
i=1

or, since the lag of z, is arbitrary, as
By, = p, + vz, + &,

The cointegration tests were performed in a six-variable system containing all the vari-

ables and a five variable system where UNEMP was excluded. The results were similar
and only the tests in the six variable system are reported. Since the presence of seasonal
roots in the DGP for LRGDP could not be rejected the transformation SUMGDP =

(1 + B + B? + B’)LRGDP is used to remove the seasonal roots.

The LR-tests for the rank of IT and the corresponding estimates of the cointegrating rela-
tions are reported in Table 4. The test-statistics A,,,, and Ay, ., both test the null » < r*
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Table 5. Tests of Hypotheses on the Cointegrating Relations

Hypothesis x? df
UNEMP does not enter into the cointegrating relations 3.101 2
LCPI does not enter into the cointegrating relations 5.322* 2
LIPOECD does not depend on the cointegrating relations 6.116° 2

The test statistics are asymptoticaily distributed as a x~ conditional on the cointegrating rank r
=

a) Denotes significance at the 10% level, b) at the 5% level, ¢) at the 2.5% level and d) at the
1% level.

and differ only in the alternative. For N\ the alternative is r = r* and for A, r =
r*. Both tests indicate that there are two linearly independent cointegrating relations.

To further investigate the nature of the cointegration, a series of LR-tests of o and «y
were conducted. The test statistics reported in Table 5 have the usual asymptotic x*-dis-
tribution, conditional on the cointegrating rank r = 2.

The inference that UNEMP is integrated is, as discussed above, questionable on theoreti-
cal grounds. We would, consequently, not expect UNEMP to enter into the cointegrating
relations. The zero restrictions on the row of « corresponding to UNEMP can not be
rejected at any reasonable significance level.

LCPI is the only nominal variable in the system and it seems unlikely that this variable is
cointegrated with the other, real, variables. This hypothesis is rejected at the 10% level
and is thus only weakly supported by the data.

Cointegration implies that at least one of the variables is caused (in the Granger sense)
by the other variables in the cointegrating relations. It does however seem unlikely that
LIPOECD is caused by the other, domestic, variables. The absence of causality in this
direction implies that the row in +y corresponding to LIPOECD is zero, a hypothesis
which is rejected by the data.

We conclude that LRGDP, LRLABC, LIPOECD and LIPSWE are cointegrated at the zero
frequency with cointegrating rank two. We can not rule out the possibility that LIPOECD
is Granger-caused by the other variables in the cointegrating relations.
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Figure 2. Identification of ARIMA Model

Autocorrelation Function Partial Autocorrelation Function
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Estimates are for the period 64:1 to 78:4.

3. The Forecasting Models

Below we identify forecasting models using the ARIMA, transfer function and VAR
model approaches. In all cases we use only the first 60 observations. This means that we
only use information up to 78:4 to specify our models.

3.1. Identification of an ARIMA Model for UNEMP

‘When we tested for unit roots in the UNEMP series for the identification period 64:1-
78:4 we could reject the unit root at the 10% level if no seasonal dummies were included
in the model. This result is in accordance with the automatic identification procedure in
AUTOBOX software which suggests that the original series is used. The ACF and PACF
are given in Figure 2.

The ACF and PACF suggest an AR(2) model with a seasonal term. The seasonal pattern
in the PACF suggests a seasonal MA(1) term but, we have also tried a seasonal AR(1)
component.

We obtained the following estimated models for the 64:1-78:4 period (s-ratios in paren-
thesis),

(1-0.382B—0.332B%)(UNEMP,—1.965) = (1+0.506B%a,

(2.98) (2.53) (8.88) (3.89)
6, = 0.3019, AIC = —2.262 n = 60, df = 56

{1-0.464B—0.318B%)(1—-0.610B*)(UNEMP,—2.066) = q,
(3.63) (2.38) (5.19) (4.82)
o, = 0.2859, AIC = -2.371 n =60, df = 56
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There are no significant residual autocorrelations in either of the two models. Since the
model with a seasonal AR-component is slightly better than the MA-model we decided to
use that model as a yardstick for the transfer function and VAR models.

3.2. Identification of a Transfer Function Model

There are several approaches to transfer function identification. The best known method,
the pre-whitening method proposed by Box and Jenkins [1976], uses an estimated
ARIMA model for the input variable as a filter for both the input and the output vari-
able. After filtering both variables, ordinary cross correlations are computed for different
lags. By filtering the input variable to white noise the cross correlations should not re-
flect the autocorrelation structure of the input variable.

After some initial analysis we decided to use LIPSWE as input variable. Using traditional
identification techniques we found the following model for LIPSWE:

(1 — B)(1 — BYLIPSWE, = (1 — 0.599B") q, &, = 0.02196
(5.76)

with no significant residual autocorrelations at the 5% level.

We then used this model to filter UNEMP and then computed the pre-whitened cross cor-
relation function, shown in the left panel of Figure 3. Note the seasonal pattern in the
CCF. The reason for this is that the pre-whitening method works well when the series
either are non-seasonal or have a similar seasonal pattern. In the right panel of Figure 3
we show the cross correlation function when both series have been seasonally differ-
enced. The (1 — B¥) differencing can be factored as (1 — B) X (1 + B + B + B?)
which is a regular differencing of a moving four-quarter sum which removes the sea-
sonality.

From Figure 3 we identified a transfer function with a lag of 0-3 quarters. We have also
used OLS to estimate a multiple regression model between lagged values of LIPSWE and
UNEMP. The model included seasonal dummies to account for different seasonal pat-
terns. The results from the regression are very similar to the resuits in Figure 3.

The first transfer function model was estimated as

—2.271
UNEMP, = 2.062 = (7—g'goae> (1=B*) LIPSWE,

1
+ {1=0.347B—0.461B%)(1—0.7318% %

&, = 0.2522
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Figure 3. Identification of Transfer Function Model
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Estimates are for the period 64:1 to 78:4.

All estimated coefficients are significant at the 5% level. &, (0.893) is not significantly
different from 1 (+ = 1.43) and strongly correlated with the estimated mean of UNEMP.
As (1—6,B) is close to (1 —B) the model can be simplified by 'dividing' (1—B%) by (1—
B) which gives (1+B+B*+B%) LIPSWE, as the input-variable, resulting in the following
model:

UNEMP, — 2977 = —2.084 [(1+B+B*+B%) LIPSWE, — 17.457]
+ . a
(1—0.355B—0.458B8%)(1-0.7118% ™

&, = 0.2552

All coefficients are significant. The lag polynomial (14 B+ B?+ B%) has an average lag of
1.5 quarters which seems reasonable with respect to the crosscorrelations in Figure 3 and
lead times in the economy. The reduction in &, compared to the ARIMA model is very
modest (from 0.286 to 0.255).

Since LIPSWE has no a priori upper bounds, the estimated model implies that the
UNEMP varnable also is unbounded, which could not be true in the long run. However,
when testing for a cointegrating relationship between the variables in a bivariate model,
this was not rejected at the 5% level. We conclude that the model may be reasonable
only in the short run.

We have also estimated a model with LIPSWE as the input variable (not the moving
sum). The best model was obtained with a two quarter lag which is in line with the
models above. The model is:

~1.616

(1+0.3278+0.31787) LIPS
1

+ 1=0.553B—0.36687) %

UNEMP, — 2.280 = WE,_, — 4.354)

&, =0.2414
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All coefficients are significant. The roots of (1 —&,B—5,8%) are compiex with a cycle of
4.92 quarters (not too far from the seasonal periodicity) which, in combination with the
missing (1 —®B*) polynomial, implies that the LIPSWE tries to explain the seasonal
variation in UNEMP even though they have different seasonal patterns. We therefore
decided to use the previous model as our forecasting model.

3.3. VAR-Based Models

Several alternative strategies for building VAR-models have been proposed in the litera-
ture. We will consider three of these strategies in order to asses the effects of the model
building procedure on the forecasting performance.

Strategy 1. The most prevalent procedure in the economic literature is to include the a
priori determined variables with the same number of lags in all equations. The lag order
is frequently determined by LR-tests (using the Sims [1980] type of correction) or by in-
formation criteria such as AIC (Akaike [1974]), SBC (Shwarz [1978]) or LIL (Hannan
and Quinn [1979]). Jacobson [1991], in a Monte Carlo study, found that LIL (in con-
junction with multivariate Ijung-Box tests (Hosking [1980]) for white noise residuals)
performs best of the information criteria and we will primarily rely on this for lag-length
selection.

Strategy 2, This strategy allows for different lag length and is a modification of the pro-
cedure proposed by Hsiao (Hsiao [1979], Hsiao [1982]). The equation for each variable
is specified independently of the other equations using a univariate information criterion

(LIL).

In the first step the number of own lags is determined with only a priori included vari-
ables (constant term, time trend, seasonal dummies, and cointegrating relations) in the
equation. In the second step all variables not already included in the equation are tested
for inclusion with different lag lengths. The combination of variable and lag length
which gives the largest reduction in the information criteria is added to the model until
no further reductions are achieved. To safeguard against overparameterization, the num-
ber of lags tested is subject to the restriction that the degrees of freedom for the equation
is at least 20. Finally, variables with insignificant parameter estimates are removed from
the model if this does not produce a significant Ljung-Box statistic. Note that the r-tests
used as a criteria for removing individual lags are invalid when the model is estimated
using the levels of the variables when the variables contain unit roots.

Strategy 3. In this approach variables are included in the forecasting model based on
their predictive power for UNEMP as measured by conventional F-tests of zero restric-
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Table 6. Cointegrating Regressions

Dependent | Constant LIPOECD LRLABC R* D-W  Obs.
variable

SUMGDP 35.759 1.132 1.347 0.98 0.37 57
LIPSWE 1.536 0.403 0.262 0.54 2.43 60

Estimates are for the pre-forecasting penod 64:1 to 78:4

tions on the lags of the variable. In a second step the variables not included in the first
step are tested for predictive power for the variables included in the model. In order to
reduce the number of possible combinations, the lag length is restricted to be equal for
all variables and selected by LIL.

For all three procedures the maximum lag length allowed is eight. The selected models
are verified by testing for white-noise residuals with multivariate and univariate Ljung-
Box tests and the lag length is increased if necessary.

An additional issue of concern is the treatment of the integrated and cointegrated vari-
ables. Engle and Yoo [1987] demonstrate that if two or more of the variables are cointe-
grated the forecasting performance of an error correction model is superior to an unre-
stricted VAR for longer lead times.

In our case, the variable of interest - UNEMP - is not cointegrated and the gains from
using an error correction representation are less obvious. Nevertheless we would expect
to achieve a modest gain from improved forecasts of the variables used to predict
UNEMP at higher lead times.

In order to asses the effect of explicitly imposing the restriction of two cointegrating re-
lations the first and the second approach to model selection above will be used with both
the error correction representation and the unrestricted VAR representation. The fore-
casting models based on the ECM are labeled VARIA and VARZA. For these models
the seasonal difference of LRGDP and the first difference of UNEMP, LIPSWE, LCPI,
and LIPOECD are used as dependent variables in the estimation. The unrestricted fore-
casting models estimated on the levels are labeled VARIB and VAR2B.

Following Engle and Granger [1987] and Engle and Yoo [1987] a two-step approach is
used when estimating the ECM, subject to the reduced rank restriction. In the first step,
the two cointegrating regressions in Table 6 are estimated by OLS and the residuals from
these regressions are our estimates of the stationary transformations, z,, and z,,.
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In the second step the ECM is estimated by OLS using the estimated stationary transfor-
mations. More etficient estimates could be obtained by the FIML method of Johansen or
by using Zellner's SURE in the second step when the explanatory variables differ be-
tween equations. The two-step OLS procedure is chosen because of its computational
simplicity.

For the VARIA model (the ECM with equal lag lengths) a lag length of one was selected
and seasonal dummies where included. Each equation thus contains a constant term,
three seasonal dummies, the stationary linear combinations z, and z, and the first lag of
the six dependent variables in the model. Estimates of the equations in the model are in
Table Al of the appendix. The VARIB model has a lag length of 2 and seasonal dum-
mies as well as a time trend are included in each equation. Estimates of this model is in
Table A2 of the appendix.

For the VARZ models the set of explanatory variables is different for each equation and
for the sake of brevity only the equation for the unemployment rate is reported in the
text. Estimates of the full models are in Tables A3 and A4 of the appendix. In the
VAR2A model the LIPSWE variable only enters the model through the cointegrating re-
lations and the equation for the unemployment rate is

VUNEMP, = ay + a\Dy, + a,Dy, + 3Dy, + 02y, + a52,,
+ agVUNEMP,_| + a,VLRLABC,_, + ¢,,.

For the VARZB model all six variables remain in the model and we have the following
equation for the unemployment rate

UNEMP, = ay + a\Dy, + Dy, + asDy, + ayt + asUNEMP,_,
+ a6l CPIl,_, + o;,LCPI,_, + o4LCPIl,_; + aolLRGDP,_, + o, ([LRGDP,_,
+ o LRLABC, | + o, ,LRLABC,_, + a,LIPSWE, , + o LIPSWE,_,
+ aLIPOECD,_, + a\(LIPOECD, , + a,LIPOECD,_; + &,,.

The third approach tends to lead to models with a small number of variables. The inclu-
sion of the cointegrating relations requires that separate forecasting models are built for
the cointegrated variables, thus negating some of the gains from having a small forecast-
ing model. In addition, the variables are required to be stationary for the F-tests to be
valid. Stationary differences of the variables (except for UNEMP which is in levels) will
consequently be used with the third approach and the possible gains from imposing the
cointegration restrictions are ignored. This model is referred to as VAR3.

The tests used to determine which variables to include in the model are reported in
Tables A5 and A6 of the appendix. Based on these tests it was decided to only include
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the first difference of LIPSWE in the model. The explanatory variables in the two equa-
tions are two lags of UNEMP and VLIPSWE, a constant term and seasonal dummies.
Estimates of the model are shown in Table A7 of the appendix.

4. Forecasting Results

To evaluate the forecasting performance of the specified models we have used a rolling
estimation scheme. The models were first estimated with data up to 78:4 and then fore-
casts were made for each of the following eight quarters. Future values for the explana-
tory variables were obtained using an ARIMA model to forecast LIPSWE in the transfer
function model and using the relevant equations for the VAR models. We have thus
made the forecasts the way they would be made in a real situation.

After the first set of forecasts had been obtained, the models were re-estimated using
data up to 79:1 and then forecasts were made for the following eight quarters. This pro-
cedure was repeated for all quarters up to 88:4. The same specified models were used for
the whole 10 year period. In practice the models would be re-specified at some pre-
determined interval or as the forecast errors grow. Our approach implies model stability
over time. Probably, this assumption does not hold for all models. Still, we have judged
the positive effects of modifying the models to be of less importance in our case. If we
want to re-specify the models we still need some reasonable way of determining when
the models are to be re-specified.

The results will be shown in three different ways. First we present diagrams showing the
RMSE and the mean error of the forecasts at different lead times in Figure 4. We also
computed the mean absolute error, but since the results are very similar to the RMSE re-
sults we do not show these diagrams. Tables A8 to A12 in the appendix show the actual
values of the RMSE, mean error as well as the mean absolute error.

We then present graphs showing forecasts with different lead times at selected origins.
Finally, we do a pairwise comparison of the forecasting information for the models at the
eight lead times, using a test proposed by Fair and Shiller [1990].

4.1. RMSE and Mean Error

Figure 4 shows that the ARTMA and transfer function models perform best over all lead
times. Except for the seven and eight-quarter-ahead forecasts the transfer function model
is marginally better than the ARIMA model. The gain from including LIPSWE in the
transfer function model is relatively small, even though the parameters of the transfer
function are significant. One reason for this is that we have to make forecasts of future
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Figure 4. Forecast Statistics
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LIPSWE values in order to forecast UNEMP. If the true LIPSWE values are used to
forecast UNEMP (which would not be possible in a real situation) the RMSE for the
transfer function model is reduced significantly. At lead time eight the reduction is
approximately 20%. This is in accordance with the result of Ashley [1983], who shows
that 'For a variety of types of models inclusion of an exogenous variable x, ... worsen
the y, forecasts whenever x, must itself be forecast by £, and MSE(%) > Var(x)."'

The VAR3 model RMSE is not too far from that produced by the ARIMA and transfer
function models. The more complex VAR1A-VAR2B models have RMSE values up to
twice the ARIMA RMSE. The 1A and 2A models generate better forecasts than the 1B
and 2B models.

The higher RMSE values for the VAR1 and VAR2 models are partially due to the rela-
tively large negative bias.

4.2. Forecasts at Different Lead Times

The one step-ahead forecasts in Figure 5 are very close to the true values, except possi-
bly for the VAR1B and VAR2B models. When we look at the eight step-ahead forecasts
there are at least three different patterns. The VARI1A, VARIB and VAR2A models do
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Figure 5. Continued

VAR2B Igodel

X
uNEwe JVET-07 R —
HOMSONT - — — ORICINTE - ——
HomsONS - .- | L CGNBD —eee
- CRISONS. S omGINEG
ORIGINBT ...
ORICINGS .
| r ORIGINGS - ——
a4 § i L 4.0 4 i ORIGINES - — =
| kg iy 4 R s
1 o i . \
: AR Hey w TE
' . @l 1y -
% VAN AU AL
I31 AL i 2l 2 ;
. E ¢ LA ] . ¥ g
; 1 AL o AR . . ' .
| R : o |
| ’ .
el - ’
v % v A
A58 M VR L | 2.0 Y\
i! b v
\ ) '
f:
'a T T T T T T T T T 1o e T T T T T T T
s 8 a0 82 B4 L Es %0 76 8 a0 82 as 86 88 20
50 6.0
UNEWP _— UNEMWP —
HORSONT - — ORIGINTE - - —
HOMSONS - .. ORIGMNBO  -.-.-
504 5.0 4
oRIGHEZ ...
ORIGINBS
ORIGINBS - ——
40 4.0 4 CHIGINBS ..
3.0 4
20

1.0

10

8 ’8 LS a2 B4 88 8a 90 78 78 a0 a2 as Ba as %0

Left panels are one step and eight step-ahead forecasts. Right paneis are forecasts with origins 78:4, 80:4,
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not catch the downswing in unemployment in 1984. The maximum forecasting error is
about two percentage units! However, they do catch the rise in 1981. The VAR2B model
tracks the rise in 1981 and fall in 1984 with a varying delay. The VAR3, ARIMA and
transfer function models also miss the turning point in 1981, but they do not overshoot
after 1984, as the VAR2B model does. These models seem to smooth the unemployment
series.

4.3. Fair-Shiller Tests

Fair and Shiller [1990] proposed a procedure for testing the forecasting information in
forecasts from two or more models. For two forecasting models they estimate the model

Y, -Y_,=a+B(Y,_, - Y )+vhh,-Y ) +y €))
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Figure 5. Continued
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where Y, and Y,_, are the true values of dependent variable at time ¢ and ¢—s respectively
and sf’,.,_, is a forecast of ¥} at time ¢—s, § periods ahead, using model i (i = 1, 2). The
forecasts are based on information known at no later than period ¢—s. If the estimates of
8 and +y are zero, neither model 1 nor model 2 contains any information useful for s pe-
riod-ahead forecasting of Y. If only the estimate of 8 is significant, model 1 contains all
relevant information in both models plus some information not available in model 2. If
the estimates of both 8 and -y are significant both models contain unique forecasting

information. (Note that if both models contain exactly the same information we will not
be able to estimate the coefficients.) « is an estimate of the forecasting bias. Fair and
Shiller propose testing the following hypotheses; H;: § = 0 and H,: y = 0 where "H,
is the hypothesis that model 1's forecasts contain no information relevant to forecasting s
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Figure 6. Fair-Shiller Tests
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Figure 6. Continued
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period ahead not in the constant term and in model 2, and H, is the hypothesis that
model 2's forecasts contain no information not in the constant term and in model 1".

Equation (3) was estimated using the Newey and West [1987] consistent variance-covari-
ance estimator to correct for autocorrelated residuals and heteroskedasticity. Figure 6
shows the (absolute) s-vaiues for § and + at each lead time and for all combinations of
forecasting models.

The transfer function model has significant coefficients at all lead times in all compar-
isons. The same is true for the ARIMA model except when its forecasts are compared to
the transfer function forecasts. This is to be expected since the ARIMA model is a subset
of the transfer function model. (At least if the forecasts of the LIPSWE variable contain
some unique forecasting information.) It is also interesting to note that the coefficients
for the VAR3 model (with RMSE similar to the ARIMA and transfer function models)
are not significant when compared to the ARIMA (with one exception) and transfer
function models.
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Figure 6. Continued
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The VARIA and 2A models seem to contain more unique forecasting information than
the VARIB and VAR2B models. When the A models are compared with the corre-
sponding B model, the A models have significant coefficients in all cases but one and the
B models have only one significant coefficient. The A models also do better in the com-
parisons with the ARIMA and transfer function models than the B models.

Comparing the VARI and VAR2 models we find that the VAR2 models contain more
forecasting information than the corresponding VARI model. The VAR2A model clearly
dominates the VAR1A model with four significant coefficients against zero.

5. Conclusions

The VAR3, ARIMA and transfer functions models have the lowest RMSE and mean
error values at all leads. According to the Fair-Shiller tests the ARIMA and transfer
function models seem to contain more forecasting information than the VAR models.
They do not, however, catch the turning points as well as the VAR] and VAR2 models.
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The ARIMA and transfer function models seem to be forecasting the average unemploy-
ment rate rather than the actual unemployment rate.

This shows that it is very important to 'look' at the forecasts and not solely rely on the
conventional measures of forecasting precision when evaluating different forecasting
models.

5.1. Turning Points

It is not surprising that the ARIMA model is not very good at forecasting turning points.
The AR-polynomial of the ARIMA model has two real roots and hence the business
cycle is not captured by the model. In addition, the cyclical pattern changed during the
eighties, first we had a 'mini boom' followed by a short recession and the longest recov-
ery period on record. Clearly an ARIMA-type model will not catch such movements in
the data if they are caused by factors external to the model.

The transfer function and the VAR3 models, on the other hand, include a measure of the
economic activity (the industrial production). We would therefore expect these models to
predict the increase in the unemployment rate better than the ARIMA model. Since the
forecasts from the transfer function and the VAR3 models are very similar to the
ARIMA forecasts we conclude that the variation in the unemployment rate is, at least
partially, due to other factors.

These factors are to some extent included in the VAR] and VAR2 models. These models
do, however, overshoot and miss the second turning point by approximately one year.
The economic recovery can largely be explained by an upswing in the international
economy and the combined effect of the devaluations of the Swedish krona by 10% in
September 1981 and by 16% in November 1982. Since the exchange rates are not in-
cluded in the models this might be an explanation why the VAR models miss the second
turning point. \

Due to the inherent complexity in the economy we would expect the VAR models that
contain more variables (more information) and allow for interaction to forecast turning
points better than the simpler ARIMA and transfer function models. It is, however, clear
that some important information is missing in our models.

5.2. Identification Issues

In most applications of transfer function modelling the input and output variables are
either non-seasonal or have the same seasonal pattern. Then the pre-whitening cross-cor-
relation method performs well. When the variables have different seasonal patterns, as in
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our case, pre-whitening can obscure the relationship between the variables. Ideally, we
should be able to remove from the output variable the part of the seasonal variation that
is not explained by the input variable, before pre-whitening. Otherwise it is possible that
the cross-correlation function will be dominated by the confounded seasonal patterns.

In VAR models it is common practice to include the a priori determined variables with
the same number of lags for all variables and in all equations. This is largely due to the
simplification of the identification and estimation achieved by imposing this type of con-
straint. In many cases, as in the VAR1 models, this leads to low lag lengths being select-
ed. Alternatively a very rich parameterization with few remaining degrees of freedom is
chosen. Both strategies are potentially damaging to the forecasting performance. In our
case the VARI models do worse than the corresponding VAR2 models and the VAR3
model. It thus appears that a better strategy is to allow for different lags and to choose a
parsimonious model as in VAR2, or to test each variable for inclusion as in VAR3.
Differentiating between the VAR2 and VARS3 strategies is harder but we tend to favour
the VAR2 strategy since it tends to lead to 'richer' models.

5.3. Cointegration

Our results confirm the finding in Engle and Yoo [1987] that explicitly imposing the
cointegrating restrictions rather than estimating the unrestricted VAR in levels improves
the forecasting performance, especially for longer leads. This is noteworthy since the
variable we forecast, the unemployment rate, is nor included in the cointegrating rela-
tions.
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Dependent Variable
VUNEMP VLCPI V,.LRGDP VLRLABC VLIPSWE VLIPOECD
Constant 0.3864 0.0728 0.0023 0.0140 —0.0196 —-0.0225
(0.501) (0.019) (0.039) (0.044) (0.044) (0.023)
D, —0.4403 —~0.0633 0.0348 0.0167 0.0503 0.0455
(0.576) (0.022) (0.045) (0.050) (0.050) (0.027)
D, ~0.1746 -0.0522 -0.0105 ~0.0393 —0.2463 0.0426
(0.430) (0.016) (0.034) (0.037) {0.037) (0.020)
D, -0.6300 -0.1023 0.0880 0.0153 0.2285 0.0451
0.922) (0.035) (0.073) (0.080) (0.080) (0.043)
7 2.6033 -0.0360 —-0.1077 0.0514 0.0083 0.1366
0.917) (0.035) (0.072) (0.080) (0.080) (0.043)
z —4.0172 0.0634 0.1472 0.0188 ~0.0944  —0.1815
(1.332) (0.051) (0.105) (0.116) (0.116) {0.062)
VUNEMP,, | _0.5364  —0.0046  —0.0235 ~0.0068 0.0002 0.0020
(0.144) (0.005) (0.011) (0.013) (0.013) (0.007)
VLCPI, | —1.8971 0.1381 —0.6809 0.2403 0.2263 ~0.3045
(3.953) (0.150) (0.312) (0.344) (0.344) (0.185)
V.RGDP,, | —0.5949 0.0013 0.2311 0.0851 0.3570 —0.1312
(1.580) (0.060) (0.125) (0.138) (0.137) (0.074)
VLRLABC, 1.3931 -0.1273 0.0684 -0.3310 0.1681 0.1459
(1.717) (0.065) (0.135) (0.150) (0.149) (0.081)
VLIPSWE, 1.4053 —0.2089 0.0985 0.1041 —0.0953 0.1651
(1.996) (0.076) (0.157) (0.174) (0.174) (0.094)
VLIPOECD,, | —0.6165 ~0.0917 0.0169 —0.3572 0.2552 0.5585
(2.389) (0.091) (0.188) {0.208) (0.208) (0.112)
R2 0.740 0.392 0.522 0.643 0.991 0.593
D-W 1.845 2.134 2.137 2.000 1.904 1.843
LB-0(21) 26.413 21.766 26.505 16.345 19.059 15.607
Multivariate LB-Q(648) = 664.564, p = 0.323

Estimates are for the period 65:2 to 78:4. Standard errors in parenthesis.
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Table A2. The VAR1B Forecasting Model

Dependent Variable
UNEMP LCPI LRGDP LRLABC LIPSWE LIPOECD
c 80.3028 0.1679 23.1794 3.3127 0.1782 1.8880
onstant
(32.303) {0.895) (2.435) (2.435) (2.404) (1.508)
D —1.1800 -0.0177 0.1918 0.0359 —0.0028 0.0322
2 (0.687) (0.019) (0.052) {0.052) (0.051) (0.032)
D —0.4718 —0.0266 0.0053 —0.0327 —0.2756 0.0263
3 (0.472) {0.013) (0.036) (0.036) (0.035) (0.022)
D —1.2269 —0.0566 0.2984 0.0405 0.0841 0.0356
4 (1.025) (0.028) (0.077) 0.077) (0.076) (0.048)
. 0.2186  —0.0023 0.0273 0.0094 —0.0029 0.0062
(0.072) (0.002) (0.005) (0.005) (0.005) (0.003)
UNEMP 0.4045  -0.0048  -0.0100  —0.0111 0.0104 0.0028
# (0.165) (0.005) (0.012) (0.012) (0.012) (0.008)
UNEMP 0.1419  —0.0010  —0.0053 0.0159 0.0106 0.0023
£2 (0.163) (0.005) (0.012) (0.012) {0.012) (0.008)
LCPI —1.3927 0.7868 —0.1906 0.5875 0.4264 —0.2004
&l (4.653) (0.129) (0.351) (0.351) (0.346) (0.217)
LCPI —3.5086 0.1915 -=0.5513 -0.7221 —0.6475 0.0308
1l (4.989) (0.138) (0.376) (0.376) (0.371) (0.233)
LRGDP —2.5669 -0.0069  —0.1118 0.0651 ~0.0516 0.0223
#l (1.579) (0.044) (0.119) (0.119) (0.118) (0.074)
0.5320 —0.1010 —0.6910 —0.1409 —0.0020 —0.0148
LRGDP, ,
(1.481) (0.041) (0.112) (0.112) (0.110) (0.069)
LRIABC. —1.2627 —0.0099 =0.0315 0.4152 0.3955 0.0134
1 (2.268) (0.063) (0.171) (0.171) (0.169) (0.106)
—4.,9317 0.2147 —0.0883 0.1931 0.0352 —0.0616
LRILABC,
2 (2.288) (0.063) (0.173) {0.172) (0.170) {0.107)
LIi’SW —1.4832 —0.1095 0.4422 0.1678 0.3940 0.0081
=1 (2.076) {0.058) (0.157) {0.156) (0.155) 0.097)
LIPSWE 0.6533 0.0950 —0.1447 —0.0450 0.1828 —0.1027
2 (1.967) (0.055) (0.148) (0.148) (0.146) (0.092)
1.3662 —0.0517 0.0221 —0.4844 0.0092 1.3812
LIPOECD
POECD,., (2.725) (0.076) (0.205) (0.205) (0.203) (0.127)
—4.4896 0.1671 -0.3052 0.2268 0.3214 =0.6037
EIPDECD (3.125) (0.087) (0.236) (0.236) (0.233) (0.146)
R 0.805 1.000 0.986 0.995 0.992 0.996
D-w 1.938 2.171 2.308 1.985 1.582 2.208
LB-0(21) 24.379 18.063 13.851 19.156 13.905 17.979
Multivariate LB-Q(684) = 662.453, p = 0.720

Estimates are for the period 64:3 to 78:4. Standard errors in parenthesis.
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Dependent Variable
YUNEMP VLCPI V4LRGDP  GIRIABC VLIPSWE VLIPOECD
— 0.7732 0.0113 0.0256 0.0641 0.0044 0.0063
(0.108) {0.004) {0.010) (0.010) (0.008) (0.005)
D, —-0.9187 —0.0089 -0.0010 ~0.0175 0.0823 —0.0010
: (0.115) {0.003) (0.008) (0.010) {0.007) (0.006)
D, —0.6315 -0.0105 —0.0223 —0.0586 —0.2460 0.0084
(0.143) (0.004) (0.008) (0.008) (0.009) (0.005)
D, —1.2467 —0.0016 0.0553 -0.0410 0.2698 —0.0263
(0.260) {0.009) (0.021) (0.021) (0.017) (0.013)
z 2.3056 —0.0025 -0.1828 0.0339 -0.0117 0.0991
(0.754) {0.026) (0.060) {0.059) (0.047) (0.039)
2 —2.9400 0.0427 0.2505 0.0095 ~0.0351 —-0.1319
(1.004) (0.034) (0.079) (0.081) (0.061) (0.051)
VUNEMP, | ‘(g-‘;ﬂ)l 3
VLCPI,, ‘(g-;ggi
VLCPI,, ‘((1);‘1";‘
VLCP] . 0.6246 —0.7568
i (0.121) (0.275)
VLRGDP,., (g-ﬁz‘*;
VLRLABC, -0.3579 0.1420
F (0.129) (0.083)
VLRLABC,, | —3:3513
E (1.526)
VLRLABC, 4 ‘(3-‘13(7)')‘
VLIPOECD, -0.4777 0.6665
& (0.176) (0.112)
R 0.765 0.462 0.478 0.722 0.995 0.541
D-W 2.171 1.708 2.165 2.059 1.888 2.127
LB-Q(21) 17.071 13.879 21.720 15.047 14.484 18.758

Muitivariate LB-Q(612) = 617.522.  p = 0.437

Estimates are for the period 66:2 to 78:4. Standard errors in parenthesis.
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Table A4. The VAR2B Forecasting Model

Dependent Variable
UNEMP LCPI LRGDP LRLABC  LIPSWE  LIPOECD
Eimstant -80.3572 0.2873 12.9117 —2.4031 4.9543 0.6201
(11.612) {0.150) (2.372) (1.108) (0.893) (0.150)
D 2.3078 0.1000 —0.0320 0.0494
2 (0.252) {0.021) (0.014) (0.008)
2 -0.0098 -0.0187  —0.2509
3 {0.003) (0.008) (0.007)
D 1.2748 0.0934 —0.0654 0.1065
4 (0.146) (0.018) (0.013) (0.024)
; 0.0164 0.0046 0.0150 0.0014
(0.003) (0.002) (0.003) {0.000)
UNEMP,_, —-0.0110  —0.0167 0.0093
(0.002) (0.007) (0.004)
UNEMP,_, (g-ggg
UNEMP ” —0.2954 0.0134
' (0.092) (0.007)
UNEMP, _g (3'%
Leer,, 1.6615 0.8731 -0.5817 0.7867
- (3.104) (0.023) (0.099) {0.228)
LCPI. 3 —5.7565 -0.6514
! (3.980) (0.239)
ny | g
F e
LRGDP, _, 1.6314 -0.0552  —0.4771 0.1294
(0.965) (0.016) (0.105) (0.080)
LRGDP,_, (;’)- g‘;’;‘)’
LRGDP,_, (g-g;g?
LRGDP,_ (?,'Ziiﬁ




Table A4. Continued

Dependent Variable
UNEMP LcPI LRGDP  LRLABC  LIPSWE  LIPOECD
LRLABC,_, | —3-2011 0.5072 0.2161
.x (1.15T) (0.096) {0.090)
LRLABC, , | —4.0565 0.1370
- (1.435) (0.042)
LRLABC, —-0.1113
i (0.046)
LRLABC, 4ol
=3 (0.098)
LRLABC,_, —0.2825
(0.090)
LRLABC,_, 0.1831 —0.5876
. (0.036) (0.107)
LIPSWE, _, 0.3274
(0.088)
LIPM,A.Z —4,7907
(0.545)
(0.745)
LIPOECD,_, | 16735 —0.8770 0.3952 1.4998
k= (2.077) (0.182) (0.075) (0.102)
LIPOECD 3 —13.4901 0.9665 —0.6611
= (3.426) (0.305) 0.097)
LIPOECD, , | 8.1059 —0.5451
(2.047) {0.183)
R? 0.928 1.000 0.984 0.997 0.996 0.994
D-W 2.263 2.143 1.936 2.054 2.003 2.063
LB-0(21) 20.788 16.936 13.285 22.408 15.624 19.382
Multivaniate LB-0(612) = 660.931, p = 0.081

Estimates are for the period 66:1 to 78:4. Standard errors in parenthesis.




34

Table AS. Bivariate Systems

F-tests for zero coefficients on lags of

Variables Lags® (p-values) R
(stationary

differences) UNEMP LIPSWE LRLABC LRGDP LCPI  LIPOECD
UNEMP 2 0.000 0.045 0.765
LIPSWE 0.192 0.272 0.989
UNEMP 4 0.000 0.162 0.821
LRILABC 0.106 0.271 0.640
UNEMP, 2 0.000 0.398 0.768
LRGDF 0.009 0.003 0.356
UNEMP, 3 0.000 0.548 0.753
LCPI 0.307 0.000 0.455
UNEMP 3 0.000 0.559 0.753
LIPOECD 0.554 0.000 0.426

a) LIL selected a lag length of 1 in all cases but this gave unsatisfactory Ljung-Box Q-statistics

and the lag length was increased.




Table A6. Trivariate Systems

F-tests for zero coefficients on lags of
Variables Lags® (p-values) R?
(stationary
differences) UNEMP LIPSWE [LRLABC LRGDP LCPI LIPOECD
UNEMP 2 0.000 0.074 0.658 0.769
LIPSWE 0.206 0.282 0.798 0.990
LRLABC 0.460 0.755 0.149 0.581
UNEMP 1 0.000 0.925 0.290 0.754
LIPSWE 0.014 0.184 0.011 0.991
LRGDP 0.540 0.014 0.014 0.291
UNEMP 2 0.000 0.011 0.209 0.780
LIPSWE 0.1%90 0.562 0.005 0.992
LCPI 0.558 0.072 0.213 0.329
UNEMP 2 0.000 0.053 0.378 | 0.774
LIPSWE 0.280 0.312 0.180 0.950
LIPOECD 0.751 (0.969 0.000 0.394
UNEMP 1 0.000 0.380  0.250 0.758
LRLABC 0.276 0.074 0.312 0.571
LRGDP 0.830 0.049 0.003 0.258
UNEMP 2 0.000 0.405 0.861 0.743
LRLABC 0.385 0.359 0.154 0.608
LCPI 0.463 0.092 0.011 0.322
UNEMP 2 0.000 0.212 0.171 0.760
LRLABC 0.201 0.044 0.013 0.647
LIPOECD 0.651 0.614 0.000 | 0.406
UNEMP 2 0.000 0.182  0.418 0.777
LRGDP 0.018 0.200 0.049 0.439
LCPI 0.230 0.150 0.145 0.333
UNEMP 2 0.000 0.493 0.637 | 0.772
LRGDP 0.011 0.004 0.962 | 0.357
LIPOECD 0.826 0.625 0.000 0.470

a) LIL selected a lag length of 1 in ail cases, when this gave unsatisfactory Ljung-Box Q-
statistics the lag length was increased.
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Table A7. The VAR3 Forecasting Model

Dependent Variable
UNEMP  VLIPSWE
0.1739 0.0103
Constans 0558  (0.047)
D 0.6062  —0.0314
2 (0.890) (0.074)
D 0.0193  —0.2863
3 {0.462) (0.039)
D —-0.2776 0.2033
4 (0.910) (0.076)
UNEMP,_, 0.5918 0.0067
{0.135) (0.011)
UNEMP,_, 0.2977 0.0055
= (0.140) (0.012)
VLIPSWE,_, | —2.0809  -0.0570
= .604) (0.134)
VLIPSWE,_, -=3.7203 0.1977
t (1.567) (0.131)
R 0.765 0.990
D-W 1.942 2.046
LB-Q(21) 19.744 18.049
Multivariate LB-((76) = 78.572,
p = 0.397

Estimates are for the period 64:4 to 78:4.

Standard errors in pareathesis.
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Method
Lead | VARIA VARIB VAR2A VARZB VAR3 ARmMA Transter
time function
1 0.2888 0.3056 0.2848 0.3614 0.2288 0.2172 0.2145
2 0.3675 0.4224 0.3586 0.3926 0.2992 0.2620 0.2321
3 0.4370 0.5655 0.4191 0.4745 0.3585 0.3181 0.3042
4 0.5302 0.7055 0.4711 0.5566 0.4160 0.3514 0.3369
5 0.6565 0.8415 0.5645 0.6843 0.4977 0.4583 0.4549
6 0.7464 0.9518 0.6483 0.7855 0.5530 0.5083 0.4914
7 0.8376 1.0792 0.7089 0.9161 0.6054 0.5616 0.5825
8 0.9399 1.1940 0.7935 1.0818 0.6513 0.5983 0.6619
Statistics based on 41 sets of forecasts covering the period 79:1 to 90:4.
Table A9. Mean Forecast Error
Method
Lead | VARIA VARIB VAR2A VARZB VAR3 ARIMA  Transfer
time function
1 1-0.1479 -0.1701 -0.1479 —0.1690 0.0011 -0.0001 0.0474
2 |-0.2283 -0.2867 -0.2150 -0.2019 0.0158 —0.0009 0.0626
3 |-0.3262 -0.4216 -0.3025 -0.2958 0.0382 -0.0008 0.0828
4 |-0.3983 -0.5535 -0.3635 -—0.2934 0.0556 0.0075 0.1037
3 |-0.4682 -0.6636 —0.3983 —0.3727 0.0739 0.0152 0.1608
6 |-0.5103 —-0.7552 —0.4322 —0.4099 0.1004 0.0232 0.1956
7 |—-0.5487 —0.8504 —0.4544 —0.4681 0.1228 0.0376 0.2400
8 1—-0.5728 —-0.9312 —-0.4655 —0.5187 0.1481 0.0583 0.2860
Statistics based on 41 sets of forecasts cavering the period 79:1 to 90:4.
Table A10. Mean Absolute Forecast Errors
Method
Lead | yARIA VARIB VAR2ZA VARZB VAR3 ARIMA Transfer
time function
1 0.2378 0.2635 0.2283 0.3052 0.1696  0.1701 0.1565
2 0.2802 0.3521 0.2692 0.3481 0.2322 0.2073 0.1737
3 0.3614 0.5059 0.3405 0.3994 0.2762 0.2566 0.2279
4 0.4422 0.6442  0.4093 0.4765 0.3104 0.2609 0.2467
5 0.5141 0.7555 0.4566 0.5829 0.3808 0.3539 0.3111
6 0.5673 0.8352 0.4799 0.6676 0.4354 0.3888 0.3522
2 0.6583 0.9430 0.5573 0.7916 0.4667 0.4228 0.4157
8 0.7442 1.0278 0.6296 0.9400 0.5063 0.4532 0.4531

Statistics based on 41 sets of forecasts covering the period 79:1 to 90:4,
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Table A11. Root Mean Square Error Relative to ARIMA Model

Method
Lead | VARIA VARIB VAR2A VAR2B VAR3  Transfer
time function
1 | 13296 14073 1.3115 1.6641 1.0533  0.9876
2 | 14028 1.6122 1.3688  1.4986  1.1422  0.8859
3 | 13737 L7TT3 13173 14913 L1270 0.9561
4 | 15087 2.0077 1.3404  1.5838  1.1838  0.9586
5 | 14324 18361 1.2316 1.4932  1.0858  0.9926
6 | 1.4686 1.8726 1.2754  1.5454  1.0880  0.9668
7 | 14915 19218 1.2624  1.6313  1.0780  1.0373
8 | 15709 1.9956  1.3263  1.8082  1.0886  1.1063

Statistics based on 41 sets of forecasts covering the period 79:1 to 90:4.

Table Al12. Mean Absolute Error Relative to ARIMA Model

Method

Lead § VARIA VARIB VAR2A VAR2B VAR3  Transfer
time function
1 | 13981 1.5488 1.3422 1.7943  0.9968  0.9198
2 | 13512 1.6982 1.2984 1.6790 1.1201  0.8375
3 | 14086 19720 1.3271  1.5568  1.0767  0.8885
4 | 1.6951 24694 15688  1.8265 1.1898  0.9455
5 | 1.4526 2.1347 12901 1.6470  1.0759  0.8789
6 | 1.4591 2.1482 12345 L7173 11200  0.9060
7 | 15572 22305 13181  1.8724  1.1039  0.9832
8 | 16420 22679 13892  2.0740 _ 1.1170 _ 0.9997

Statistics based on 41 sets of forecasts covering the period 79:1 to 90:4.
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Sammanfattning

Syftet med denna studie ir att undersoka hur valet av modellansats paverkar prognos-
egenskaperna for olika tidsseriemodeller. Som beroende variabel har vi anvint andelen
arbetslosa enligt AKU. Tidsserien for arbetslsheten, som r en viktig poiicy-variabel,
har under prognosperioden 1979 till 1990 haft tv4 skarpa vindpunkter och borde dirfor
vara relativt svdr att forutsiga.

Vi har anvant tre 6verlappande modellklasser: ARIMA-, transferfunktions- och vektor-
autoregressiva (VAR) modeller. Arbetshypotesen har varit att de mer komplexa VAR-
modellerna, som utnyttjar mer information om sambanden mellan variablerna, bér
generera mer precisa prognoser. Aven om VAR-modellerna innestuter ARIMA- och
transferfunktionsmodellerna har de senare mer sofistikerade residualmodeller varfor
ARIMA- och transferfunktionsmodellerna inte behéver vara specialfall av VAR-modell-
ermna.

ARIMA- och transferfunktionsmodellerna har identifierats och skattats med gingse meto-
der. Metoderna for att bygga VAR-modeller ir inte lika véldefinierade och vi har dirfor
forsokt belysa hur lag-lingden bér bestimmas och hur ko-integrerade och integrerade
variabler bor behandlas.

Som forklarande variabler har vi anvint industriproduktionsindex, konsumentprisindex,
real BNP, real arbetskraftskostnad och industriproduktionsindex for OECD. Fér samtliga
variabler har vi anvant kvartalsdata for perioden 1964 till och med 1990. Samtliga
modeller har specificerats (identifierats) med hjdlp av data frin perioden 64 t.o.m. 78.

Utvérderingen av de specificerade modellerna har gjorts pa foljande sitt: Modellerna
skattades forst med data t.0.m. 78:4. Sedan gjordes prognoser for de foljande Atta kvar-
talen. De forklarande variablerna prognosticerades for transferfunktionsmodellen med en
ARIMA-modell och for VAR-modellerna med de relevanta ekvationerna. Prognoserna
for arbetslosheten har siledes gjorts p4 samma sitt som i en verklig situation. Efter den
forsta uppsttningen prognoser skattades modellen om med data fram t.0.m. 79:1 och
prognoserna berdknades p4 nytt for de foljande 4tta kvartalen, Denna procedur upp-
repades sedan for alla kvartal t.0.m 88:4.

Vi fann att ARIMA- och transferfunktionsmodellerna tillsammans med en enklare VAR-
modell (en tva-variabelmodell) gav de lagsta prognosfelen (mitt med roten ur medel-
kvadratfelet) 6ver alla prognoshorisonter. (Transferfunktionsmodellen och den enkla
VAR-modellen har industriproduktionsindex som forklarande variabel.) Virdet av att
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inkludera en forklarande variabel i transferfunktionsmodellen ir relativt litet. Om vi er-
satter de prognosticerade vardena for industriproduktionen med de faktiska forbittras
dock medelkvadratfelet med upp till 20%. Ett sk Fair-Shiller-test visar att de tre basta
prognosmetoderna innehdller mer prognosinformation dn de mer komplexa VAR-modell-
erna.

Aven om ARIMA-, transferfunktionsmodellerna och den enkia VAR-modellen har min-
dre prognosfel dn de mer komplexa VAR-modeilerna sa finner VAR-modellerna vind-
punkterna med stdrre precision. De enkla modellerna verkar mer ge prediktioner éver
den genomsnittliga arbetslosheten. Detta kan eventuellt forklaras med att de mer kom-
plexa modellerna innehaller mer information om det ekonomiska systemet och dirfor
battre kan finga in vindpunkterna.

Den vanliga kors-korrelationsmetoden for att identifiera transferfunktionsmodeller funge-
rade mindre bra pa grund av att den férklarande variabeln, industriproduktionsindex, har
ett zanat sisongmonster &n den beroende variabeln, arbetsldsheten. For att lindra detta
problem skattades korskorreiationsfunktionen frdn sisongdifferentierade data. Sisong-
variationen reducerades och det blev littare att identifiera sambandet mellan variablerna.

Nar man specificerar VAR-modeller brukar man, for att forenkla modellbyggandet, ofta
ha samma antal laggar for alla variabler i systemet. Detta leder ofta till att modellerna
innehdller f4 laggar. En alternativ metod &r att tillta olika antal laggar foér variablerna
vilket ger modeller som hushallar med frihetsgraderna. Den senare ansatsen gav sikrare
prognoser for arbetslosheten.

Genom att inkludera ko-integrerande restriktioner forbéttras prognosformagan, specielit
pa ldngre sikt, jamfort med att skatta VAR-modeller utan restriktioner pi nividata.
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