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Abstract. We introduce a method for dynamic classification of vector time
series data into different regimes. A hidden Markov regime-switching model is
used in classification. Past regimes are determined in advance and characterized
by first and second moments of the observation vector. In estimation and model
selection, instead of the maximun likelihood principle, we use Brier’s probability
score making it possible to perform feature extraction, eg. noise-removing filtering.
When calibrated to the forecast horizon, the method provides a simple and compu-
tationally efficient way to utilize leading information in forecasting regimes in time
series. The method is applied on forecasting turning points of Sweden’s industrial
production, where the Stock Market Index and a Business Tendency Survey series
together express expectations, providing leading information. The method is also
tested on forecasting the business cycle of the US, using GDP and the Department

of Commerce Composite Index of Leading Indicators.
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1. INTRODUCTION

In this paper, turning point prediction is interpreted as a dynamic classification
problem and a new classifier is introduced. The prediction of turning points is
both conceptually and methodologically a different problem from making point
forecasts of a time series. Generally, it is difficult and requires large data sets
to forecast every value of a time serie, whereas turning points may be easier to
forecast when the method is focussed on that problem. For economic agents, getting
reliable directional forecasts is often more important than general numerical forecast
accuracy, cf. Leitch and Tanner (1995). Methods currently in use keep transmitting
wrong turning point signals, and the field is wide open to new techniques, cf. Funke
(1997), and Stock and Watson (1993).

The present paper develops a probabilistic classification method that is partic-
ularly suitable for producing probability forecasts of turning points, where leading
information is taken from other series. Sometimes, only a part of the external
information can help in forecasting turning points. In Oller and Tallbom (1996)
low frequency or high amplitude data are considered. Here leading information is
extracted from data patterns as they appear in first and second moments.

When a continuous random variable is forecasted it is common practice to
provide both a point forecast and its confidence interval. For a dichotomous ran-
dom variable, e.g. a turning point indicator, some other concept has to be chosen,
such as the probability of an occurrence and risk bounds for false inference. A
number of probability methods for turning point forecasting have been suggested
in the literature. Most of them are based either on Neftci’s (1982) or Hamilton’s
(1989) business cycle models. Neftci’s model uses sequential probabilities. Hamil-
ton’s probabilistic business-cycle model adopts the hidden Markov regime-switching
model (HMM) from Lindgren (1978). The model has been further generalized in
McCulloch and Tsay (1994).



Recently, Hamilton’s model has been applied in constructing leading indica-
tors, cf. Layton (1996), Lahiri and Wang (1994,1996), Hamilton and Lin (1996),
and Hamilton and Perez-Quiros (1996). Bayesian inference and prediction using
HMM have been developed in McCulloch and Tsay (1993). The present paper has
Lindgren’s HMM as its data generator. Our method differs from earlier attempts
in that we apply HMM only as a probabilistic classifier; the classes (regimes) being
identified in advance as either: expansion or recession. For an interesting account
of how to do this discrimiantion, cf. McNees (1991) and Boldin (1994). This is
not merely a way of interpreting HMM; it implies other model building procedures,
requiring observed turning points to be specified in advance, not estimated. Since
in a practical forecasting situation this information is available, why not use it!
Also, there are several ways to define a turning point, and it may be an advantage

to give the forecaster a chance to choose an appropriate definition.

Pattern recognition is done in three stages: feature extraction, classification
and evaluation, cf. Fukanaga (1990), and in a time series context, Shumway (1982).
Classification into recession or no recession is obscured by noise in economic data,
cf. Morgenstern (1965). Transformations, such as smoothing, are used to facil-
itate discrimination and this is called ”feature extraction”, which in the present
paper’s applications simply means filtering by an exponentially weighted moving
average. Our general approach is close to Artis et al. (1996), where turning point
prediction means pattern recognition, applying Neftci’s model for making proba-
bility forecasts; here we use HMM as a probabilistic classifier, more precisely, a
Markov-Bayesian classifier (MBC). We propose Brier’s probability score, ie. least
squares, as an estimation criterion, because when taking the pattern recognition
approach, maximum likelihood is inappropriate.

The classification method produces a leading probability indicator for turning
points in industrial production in Sweden, where a rule of thumb is used for dating
the business cycle. Some monetary and financial leading indicators have recently

been presented in connection with HMM. Stock and Watson (1989) recommend as
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a leading series the interest rate spread (the same in Lahiri and Wang (1996)), and
Hamilton and Lin (1996) pick stock market volatility. Here the leading series are the
Stockholm Stock Market Indez (SSMI) and answers to a Business Tendency Survey
(BTS) question. We also check our method on forecasting US turning points, as
determined by NBER, using GDP and the Department of Commerce Composite
Indez of Leading Indicators (CLI).

The paper is organized as follows. In the next section the MBC is introduced.
The third section proposes a turning point forecasting method based on MBC. The

fourth section is devoted to empirical applications. Some conclusions are drawn in

the final section.

2. A MARKOV-BAYESIAN CLASSIFIER

We begin this section by describing some concepts for static classification (cf.
Fukanaga (1990)), subsequently extending the method to time series. The result is

a probability classifier whose dynamics is governed by a hidden Markov chain.

2.1. A Mahalanobis Distance Classifier

We consider two classes (a generalization to an arbitrary number of classes is
straight-forward.) 7 = {1,2} and a vector y € R™ of data to be allocated into either
of these classes. Formally, there is a pair Z = (Y, J), where Y is a random vector
and J : @ — {1,2} is a random varjable that assigns class information to ¥,
being the sample space. We observe only Y, whereas J is hidden. Thus, one needs
a rule (function) g : R™ — {1, 2}, that as accurately as possible assigns an observed
vector y, (Y = y), to the right class. We assume at this stage, that both the means
and the covariance matrices, p; and V;, of the classes ¢ = {1,2} are known.

The Mahalanobis’s distance
Dy (py) =@y —w)'V ' {y—n) (1)
is a frequently used measure of how far a random vector is located from the mean
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of its distribution. A reasonable classification rule is to assign y to the class that

minimizes the observed Mahalanobis distance. In other words, allocate y to class
P gy = v

(y = 1) V7 y = pr) = min{(y — ) Vi (y — )}, i = {1,2}- (2)

2.2 A Gaussian Classifier

If the observations can be assumed to have a multivariate Gaussian distribu-
tion, y ~ N(u;, Vi) for J = i, the maximum likelihood (ML) rule is close to the
Mahalanobis distance rule. Denoting 8 = {u;, V1, u2, Va}, the Gaussian classifier

allocates y to class r, g(y) = r, if
log|Vo| + (y — 11)' V™ (y — 1) = min{log|Vi| + (y — w) Vit y— )} (3)

The Mahalanobis distance (1) just defines a metric, while (3), including log|V;|, is

an optimal classification device for Gaussian distributions.

2.3 A Static Probability Classifier

Our next task is to derive a classifier that assigns a probability to the event
that an observation is from class i. Denoting the prior probabilities P{J = i} by

p(i), class (posterior) probabilities for observed y can be calculated by Bayes’ rule:

Yk p(i) x fly| J =1)
B =it | ¥ =i} p(1)x fly | J=1)+p(2) x f(y | J=2) "

where f(y; | J = i) is the density function of class i. Further, when P{J =i|Y =y}

are known, the Bayesian classifier allocates y to r, g(y) = r, if
PlI=r|Y=y}>3. )

Class probabilities express the uncertainty: the closer the probabability estimate
is to one or to zero, the less uncertainty there is in a decision, where 1/2 is the

threshold in (5). The Classification error probability R{Y } when allocating Y is
R{Y} = P{g(Y) # J}. (6)
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2.4 A Dynamic Probability Classifier: MBC

The classifier defined in (5) could be called static. However, our aim is to
form a dynamic probability classifier that also describes the dependence between
observations when dealing with time series data, Z = Z; = (Y%, Ji). The normality

assumption of classes now takes the form:
Ye ~ N(p,,, Va,)- (7)

In order to model time dependence in a mathematically tractable way, we pos-
tulate that J; can be described as a homogeneous Markov chain, where the data
generating process has two hidden classes. For each class the likelihood of various
observations is either of the two multinormal densities given in (7). A Markov
chain generates switching between classes. When in class ¢, the process is said to
be working in regime i. For each ¢,j € {1,2} we assume a constant probability
pij = Prob{J; =i | Ji_1 = j} that regime j will be followed by regime i. These
Markov probabilities are collected into a Markov matrix P = (p;;). The model is
now defined by regime distributions (7) and the Markov matrix P. The Markov
probabilities are pi1,pes (P11 +Pp21 = 1,p22 +p12 = 1), and the complete parameter
set is © = {u1, p2, Vi, V2, p11,p22}. When class priors at ¢ — 1, p;(t — 1), are known,

the regime (posterior) probabilities for given y; are

Pl =4 | Y =y}

_ (pri x pr(t = 1) +pai x p2(t — 1)) x f(y | Je =1) (8)
S (i xpi(t— 1) +po; xpa(t— 1)) x fly | e =J)

The formulae (7-8) and (5) define the Markov-Bayesian Classifier (MBC). Con-
ditional densities f(y: | J;) in (8) can be replaced by the inverses of the Mahalanobis
distances (1) when the regime distributions are strongly non-normal. Exact clas-
sification error probabilities (6) cannot be derived analytically. Upper and lower

bounds are given by

1(1 - \/1 —4p; x (1 =py) 6_232) <RV} < vVpix(1—-p1) e_B2r (9)

2
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based on the Bhattacharyya distance B? between classes 1 and 2

1 1 V|
B? = = D% (1, o) + =log( —), 10
8 v (e, p12) 2 9( Vil x |V2i) (10)

where V = (V1 + Vg) /2 and D% is the Mahalanobis distance (1).

2.5 The Estimation of MBC Regime Probabilities

The introduced model is a special case of HMM. Y; is an observed time series
depending on an unobserved Markov chain J;. When the parameter set © is known
and {yo,...,yr} is an observed time series, whose subsample is denoted by Y; =
{yo,..-,yt}, 0 <t <T,it is possible to estimate the classifying probability, P{J; =
i | Y¢,©}, for each observed vector y;. Hamilton (1994, page 692) presents an
estimation algorithm in a recursive form, utilizing Bayes’ rule and the Markov
property. Collect the posterior probability estimates P{J; =i | Y0} of (8)
and related Markov forecasts for priors P{J;11 = i | Y;,©} into 2 x 1 vectors.
Given starting values of probabilities at time zero, an estimate for the classifying
probability of ¥; can be found by iterating the following pair of equations:

(P{Jt =1|Y: 1,0} x flye| e = 1,@))

(}5{.],::1|Yt,6}) _\P{h=2[Ye 1O x S| 2=20))

P{J,=2|Y,0} )~ Fly: | ©) ’

and
P{Jt+1 =2 l Yt,@} P21 P22 P{Jt =2 | Yt,@} ’
where

flye | ©)
= P{J, =1|Y:_1,0} x f(ge|J: =1,0) + P{J; =2|Y;_1,0}) x f(ye| ]t = 2,0).
(13)
In this paper we set a neutral starting value, 1/2. We return to the problem of

estimating © in the next section.



3. CONSTRUCTING A TURNING POINT INDICATOR

In this section, we demonstrate how MBC, can be used for turning point fore-
casting, a natural application for two reasons. Firstly, Diebold and Rudebush (1990)
concluded that a simple Markov chain provides a reasonable description of the tra-
ditional NBER business cycle dates. Secondly, a pattern recognition approach
supports the use of vector series whose components carry leading information. We
propose an iteration of feature extraction, classification and evaluation.

Assume that we are standing at time ¢ and that we know exactly in which
regime we have been at every point in the past up to ¢t. It is then possible to
estimate the means and variances for each of the two regimes. When we now try to
look past ¢ into the future, the situation turns into a genuine HMM problem, where,
however, the static regime parameters {u;,V;} have been estimated in advance.
Another feature that distances our approach from how HMM has been used, is the
way the model is estimated. Usually a maximum likelihood approach is taken also
for forecasting. In the spirit of Geisser and Eddy (1979), we adopt a predictive
approach to model specification, basing parameter estimation and model selection
on a probability score, minimizing the turning point forecast error. This provides a
possibility for feature extraction, eg. removing noise. The computational complexity
of the method depends on the class of filters studied (if any) and the optimization
algorithm used.

Let J; denote the regime series. Our task is to predict J;4;, | > 0 at ¢, applying
MBC on series y; which carries leading information on Jy4; ( If I = 0 the indicator
is said to be contemporaneous). We have the same model as in the previous section,

but observation Y; is leading and comes from regime J;4; ie. Z; = (Y%, Ji41). Let an

observation set of the series Y;, containing leading information, be {yo,v1,-..,yr}
For estimating regime parameters we divide the dates [ = {1,...,T} into two sets:
1) ={tel| Jiqu =1} (14)

The number of elements in I(7) is denoted by T;.
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Hamilton (1989) and Hamilton and Perez-Quiros (1996) have proposed the use
of (12) to forecast regimes. However, the transition Matrix P is constant and works
as a linear operator. Hence, it does not provide optimal information on turning
points. For our method, it is crucial that one calibrates the model to horizon { and

elicits information from y; on Jyyy.

We propose that model estimation follows a three stage procedure, where stages

are iterated with different feature extraction filters, until an optimal model is found.

Step 1. Feature extraction. Apply a causal filter F', chosen so as to facilitate

classification and to provide correct reactions at turning points. We denote y; =

F(yt).

Step II. Estimation of regime parameters. Estimate:

. 1 _
b= Tt (15)
Y tel(i)
and
. 1 S
Vi=a D (G — )G — i), (16)
ttel(i)

where index sets I(i) are given in (14).

Step III. Estimation of the Markov matriz. Given filtered data yi and regime
estimates (15-16), select the Markov matrix P that minimizes Brier’s score S, ie.

the mean square error:

S=%—¥(P{Jt:1 1 Yt,G)}—é(JtH,l))z, (17)

where the expansion regime probability P{ J: = 1| Y, 0} is computed recursively

using (11-12), and the Kronecker’s function 6(J;4, 1) is one if Jiyy = 1, otherwise

Zero.
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Step II is very simple because the method ignores autocorrelation. This choice
is supported by results in Layton (1996) and Lahiri and Wang (1994,1996), and is
consistent with parsimony requirements (cf. Chatfield, 1996), when dealing with
short time series, that additionally can be difficult to align. In the case of long
and in phase correlated series, autoregressive terms could result in a better classi-
fication. They could be estimated ex post with known regimes in Step II, but the
interpretation would become more complicated.

Lahiri and Wang (1994,1996) have emphasised that square errors around turn-
ing points are overcompensated for accuracy over expansions, leading to delayed
signals. Other cost functions, eg. C(e) = e?, (¢ > 2), can be used in Step III if one
wants a higher penalty for large errors occuring at turning points.

An interesting connection to Layton (1996) and Lahiri and Wang (1994,1996)
is the following. Fixing their ”"quasi Bayesian” parameters produces the univariate
and contemporaneous case of our method, but the inference on turning points is
different. In the present method, decision rule (5) results in a turning point signal
if the threshold level 1/2 is exceeded. This is an advantage over Lahiri and Wang
(1994,1996), where the lack of feature extraction leads to a heuristically defined
threshold (0.9), and Layton’s (1996) rule: five propabilities in a row exceed 1 /2.

We emphasize the importance of testing model forecasts outside the sample.
Likelihood measures are not appropriate and conventional model selection criteria

that would prevent overfitting, do not apply.

4. EMPIRICAL RESULTS

4.1 Data

As an application of the method outlined above, let’s try to construct a model
that signals the probability of a turning point in quarterly differences of log. Swedish

industrial production (IP) in the next quarter (lead I = 1), according to the Swedish
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National Accounts. For leading information we use two sources:

(i) The Swedish Business Tendency Survey (BTS): The balance between an-
swers "higher” and "lower” expected production during the present quarter. This
is published one quarter before IP which allows us to set lead equal to one.

(ii) The quarterly Stockholm Stock Market Index (SSMI).

Occasionally, BTS and SSMI don’t correlate positively with industrial pro-
duction, but jointly the three series work as a leading vector, with little risk of
false turning point signals. The in-sample period, where the model is estimated,
is 1971:Q1-1989:Q3 and post-sample is 1989:Q4-1997:Q2. The MBC programming
has been done in Matlab®. A turning point between one regime and another is said
to have occurred if the industrial production (Q4. diff. log.) has changed the sign
and then has kept that sign for at least two quarters. All past turning points are
defined in advance according to this rule. Figure 1 shows the IP time series and its

regimes of recessions and expansions. Vertical lines indicate turning points.

4.2 Feature Extraction and Estimation

Both statistical and BTS data suffer from large errors, cf. Oller and Tallbom
(1996). Hence there is a risk of false regime shift signals if the data were to be used
as such. In Figure 2 the data is unfiltered. The regime is indicated as in Figure 1.
The curve gives the probability of being in an expansion in the next quarter. This
curve should preceed the regime indicator. We see in Figure 2 that an unfiltered
indicator is not very reliable: two late signals and a varying lead time. Now apply

exponential smoothing
ift =A$t+(l—)\)jt__1, 0<AS 1, (18)

to all series and a grid search A = .1,.2,...,1. When the lead time was set to
one, minimal Brier’s scores were obtained for A = .2 for IP, .7 for BTS, and .1 for
SSMI. The large value of A for BTS ensures that high amplitude signals get through

without much delay, cf. Oller (1986). Markov probabilities were estimated using a
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.05 grid for lambdas and .01 for finetuning the probability estimates. The estimates
obtained were p1; = .94 and poy = .44, revealing high asymmetry in persistence of
regimes. In Figure 3, classification error probability bounds are calculated using (9).
Note that the bounds become much narrower when the data are filtered, hinting of
a reduction in the risk of making wrong inference. According to bounds (9), the
maximum classification error probability is achieved for the prior values closest to
p = 1/2. The Markov probability estimates imply that those values are achieved in
recession regimes.

The method of Hamilton (1987) involves estimating model parameters by max-

imizing the likelihood function
ig
L©|Yr)=]] f o), (19)
t=1

where f(y; | ©) is given by (13). Figure 4 shows that the resulting indicator would

have been worthless if instead of (17) we wold have used (19).

4.3 Forecasting

The models were calibrated to lead [ = 1. If getting early signals is of primary
importance, an ! = 2 calibration can be used, but then leads vary between zero and
two, and a false turning point is signaled in 1996 (not shown here). Table 1 presents
summary statistics of filtered and unfiltered MBC, the indicator using ML, and of
a naive forecast.

The best MBC (filtered) had in-sample and out-of-sample Brier’s scores .019
and .008, respectively. A standard naijve competitor, the historical fraction of quar-
ters for which the economy was in an expansion (here .680), had Brier’s scores more
than 10 times higher. Out-of-sample Brier’s scores are better than in-sample, prob-
ably due to a sharp recession at the beginning of the 1990’s which is advantageous

to MBC models.
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MBC leads to almost perfect inference, as seen from Figures 5-6. When the
forecasting horizon is one quarter, MBC issues no false signals in the sense that
the indicator would pass the one half probability line when there follows no change
of regimes, or fail to pass the threshod when there follows a change. The only

irregularity is 1972:Q1 where the lead is two quarters, instead of one.

Table 1. Summary Statistics for Sweden (lead [ = 1).

Smoothing Markov In-Sample Out-of-S.
Model Constant Probability Brier’s S. Brier’s S.
Filtered By Ty =l 94, .44 .019 .008
Unfilterd - 97, .53 .055 016
ML+ Filter T [ N | 97, .93 174 .168
Naive - - 218 242

4.4 The US Business-Cycle

Here the NBER-dated recessions are forecasted one quarter ahead (I = 1) by
the quarterly per cent change in US GDP and the Composite Index of Leading
Indicators (CLI) of the Department of Commerce. NBER-dates are reported in
an appendix of Gordon (1997). The in-sample period is 1953:Q2 - 1973:Q2 and
out-of-sample 1973:Q3 - 1993:Q2. Summary statistics are shown in Table 2. The
best turning point forecasts were obtained using smoothing parameter values .4 for
GDP and .5 for CLI. The grid was .3, .4, ... ,1. We tried .1, .2, ... 1, finding
an in-sample Brier’s score minimum at (.2, .2). However, the low values of the
smoothing constants lead to late signals in turning points, and much weaker out-

of-sample behavior, alerting for overfitting. The Markov probability estimates were
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P11 = .78 and pao = .02 (grid as for Sweden) reflecting pathologically low persistence
in recessions as compared to both Swedish figures and unfiltered MBC for the US,
but out-of-sample behavior does not alert for overfitting. Note, however that the

limit probabilities are .82 and .18, quite reasonable values.

The MBC-indicator is shown in Figure 7 and the corresponding decisions on
regimes are illustrated in Figure 8. We see that the best MBC produces a turning
point indicator that works in all turning points, except for the recession 1960:Q2
- 1960:Q4. The peaks are detected with leads varying between 0-4 quarters, the
median lead being zero. The throughs are detected with leads between 0-3 quarters,
the median lead being one. Again, MBC using filtered data produces the most
reliable indicator. If no filtering would have been used, the median lead for trough
detection would be zero. For the US data a lead does not include a publication
delay, as in the Swedish case. Here, too, error bounds (9) become narrower for
filtered data, especially in the recession regime. This corroborates the finding that

the indicator is more reliable in detecting troughs than peaks.

Table 2. Summary Statistics for the US (lead [ = 1).

Smoothing Markov In-Sample  Out-of-S. Median lead
Model Constant Probability Brier's S. Brier’s S. Peaks, Throughs:
Filtered A, B .78, .02 064 .063 0,1
Unfilterd - .95, .53 071 .080 0,0
Naive - - 126 .136 -

5. DISCUSSION

We have introduced a new way to use HMM as a Markov-Bayesian classifier,
where forecast accuracy, as measured by Brier’s score, has been the minimization

criterion. The proposed pattern recognition method provides a simple way to utilize
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leading information for forecasting regime shifts. In the empirical applications,
leading information came from two expectational variables, the BTS and the SSMI,
in the Swedish case, and from the CLI in the US case.

Past turning points were determined in advance. A key idea of this study is
to utilize this easily available information. This and adopting a probability score
made it possible to apply feature extraction which proved necessary for noisy data.
Diebold and Rudebush (1991) found a substantial deterioration of forecasting per-
formance in the preliminary figures. We had access only to revised data, but the
feature extraction approach is well suited for even noisier preliminary figures.

The regime parameters are calibrated with the purpose of eliciting leading
information. Another feature missing from earlier indicators based on HMM is a
reliability measure. Here, well known classification error bounds are applied.

Our method does not lend itself to the task of determining past turning points.
We also want to emphasize that it is not real Bayesian, but empirical Bayesian, since
all parameters are estimated from data.

An almost perfect indicator for Swedish data is obtained for lead time one
quarter. Due to publication lags this means contemporaneous in real time, but
this is still a considerable gain. In the case of the US, MBC produced a reasonably
working indicator with a one quarter lead. In both applications a feature extraction
stage proved essential.

The method presented here was developed as a solution to a practical problem
of forecasting business cycle turning points. However, we want to emphasize that it
can be applied more generally as a dynamic classifier. Another typical application
would be a noisy multivariate signal from a production process that occasionally

goes into a state of malfunction.
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Sammandrag

En dold Markov-modell anvind som en dynamisk bayesiansk

klassificerare och en tillimpning pa vindpunktsprognoser

Att gora viandpunktsprognoser dr bade bergreppsmassigt och metodologiskt olikt det att man
forsoker prognosticera varje punkt i en tidsserie. Det #r ofta mycket svart och kréver stora
mangder data om man vill bygga en modell som skall gora en prediktion pa vartenda ett vérde
en tidsserie kommer att anta. Men #4r man bara intresserad av vandpunkter kan uppgiften géras
enklare ifall man da fokuserar allt intresse enbart pa dessa punkter. For ekonomiska agenter &r
det ofta viktigare att fi korrekt information om utvecklingens riktning, &n att erhélla sa
numeriskt noggranna prognoser som mdjligt.

Den metod som utvecklas hir bygger pa igenkdnning av ménster (pattern recognition). Vi
utvecklar en probabilistisk klassificeringsmetod som &r sérskilt limpad for att estimera
sannolikheten for en konjunkturell vindpunkt. Tidsmassigt ledande information inhdmtas fran
andra tidsserier. Ofta dr det dock bara en viss del av den externa informationen som kan
utnyttjas. I den vindpunktsindikator Konjunkturinstitutet nu anvénder utnyttjas enbart
sviingningar med lag frekvens eller hég amplitud, se Oller och Tallbom (1996). Aven har
anvindes samma typ av filtrering (extrahering av ménster), men filtreringsgraden bestdmmes
skilt for var serie, dir objektfunktionen #r prognosfelet. Samtidigt estimeras dven Markov-
sannolikheterna for att man skall stanna i samma regim (recession eller expansion). Markov-
sannolikheternas vintevirden 4r emellertid konstanta och kan dérfor endast indirekt anvéndas
for att, via Bayes’ formel (8) och uppdateringsformlerna (11) och (12), konstruera en indikator
som varierar.

Det som skiljer var metod fran tidigare forsok dr att vi bestimmer de historiska
vindpunkterna a priori enligt en enkel regel, de estimeras alltsd inte. Direfter kalibreras
modellen med hjilp av medelkvadratfelet i prognosen, kallat “Briers felpodng” (17). For
forsta gangen ifriga om sannolikhetsindikatorer #r vi istdnd att ge felgrénser (9) for
prognossannolikheterna. Metoden testas pd nationalrikenskapernas industriproduktion, dér
man utnyttjar tva forvintningsvariabler, en serie frin industribarometern och sé aktieindex. En
indikator erhilles som inte missar en enda vindpunkt varken under estimeringsperioden eller
utanfor denna. Inga felaktiga signaler forekommer heller, sisom létt kunde ske vid den lilla
svackan 1996.

Metoden testas éven pa USA:s industriproduktion ddr ledande information tas ur index for
tolv ledande indikatorer. Resultatet dr ocksa i detta fall tillfredsstéllande.
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