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ABSTRACT

The subject under study is prediction with a simple linear regression model in the presence of errors
in variables. The paper focuses on the case of a non-stochastic true regressor (x), but stochastic x is
also treated. For a wide range of true x values around the mean of x in the estimation period,
predictions based on OLS on the observed variables is to be preferred in terms of MSE to a predictor
based on consistent estimation of the parameters. This can be so also when x follows a trend and
predictions are made for the next observation. When the error variance of the regressor in the
prediction period differs from the mean error variance in the estimation period sample, a predictor
based on a modified OLS estimator, adjusted for that difference, behaves as the OLS predictor in the
case of equal error variances. Under certain assumptions the modified OLS predictor produces
consistent predictions, conditional on observed X for the case of stochastic x.

L.INTRODUCTION

Observations on economic time series are often subject to errors; the last data points
can be preliminary, the series can contain sampling errors, etc. For a discussion of
sources of errors, see for instance Pierce (1981). One example of the case of sampling
errors is when variables are based on household survey data concerning attitudes
about the economic outlook and buying plans. Such variables are then used as
explanatory variables in consumption or investment functions. In regression analysis
these errors are often neglected, although it is well known that OLS produces
inconsistent estimates of the structural relationship if an independent variable suffers
from measurement error. For instance in a situation of a regressor based on survey
estimated proportions Jonsson (1992) showed that the large sample bias may be large.
Much attention has been paid to methods for estimating the structural parameters in
the case of error in variables (for an early review see Madansky (1959) and for recent
extensive surveys see e.g. Fuller (1987) and Aigner et al. (1986)). Although

prediction is an important task of regression analysis this topic in connection with



errors in variables is just marginally touched upon in the literature. Perhaps this is due
to a misunderstanding. Fuller (1987, p. 74) expresses this in the following way: "One
often hears the statement , 'If the objective is prediction, it is not necessary to adjust
for measurement error.' As with all broad statements, this requires a considerable
number of conditions to be correct”. The subject under study in this paper is that of

measurement errors and prediction.

Assume the following model:

Structural equation: y, = & + fix; + g;, where g, is IN(0, crzq), =L Tp)s (§))

Measurement equations: Y, =y, +w,

X =x+up

w, is IN(0,02,,) and u, is IN(0,02,;). w;, q; and u, are assumed to be independent. T is

the size of the estimation period sample. p denotes the prediction period. If the error

variance in X, is constant, then 62, =02,

In one case there seems to be no difficulty in handling the prediction situation. This
occurs when X, is a random selection from the same population that generated the
estimation period sample (see e.g. Fuller, 1987, p. 75). OLS will then provide the best
linear predictor given X),, if the error variance in X, is the same for all . Further, if x,
is assumed to be IN(iL,, 62), (¥, X,) will be distributed as a bivariate normal random
variable. Then the OLS predictor is the best unbiased predictor conditional on the
observed X. Fuller emphasises that the use of OLS for prediction purposes requires
the assumption that Xp be a random selection from the same distribution that
generated the X, of the estimation period sample. An example when this is not the
case is given in Ganse et al. (1983). They assume different distributions of the true x
in the estimation and prediction period samples, while the other parameters in their

model are assumed to be the same for both samples. Another example concerning



yield forecasting is found in Reiser et al. (1992) . They argue for using a consistently
estimated prediction equation because of possible differences between the populations

behind the estimation and prediction period samples.

Wold (1963) has shown that if ¥ = o* + B'X + € with E(NX) = o* + B* X and if
the first and second order sample moments have the corresponding theoretical
moments of the variables ¥ and X as stochastic limits, then the least square regression
of Y on X will provide consistent estimates of the parameters o* and B*. If x; and u, in
(1) are normally distributed with constant variances, then E(¥,lx,) and E(Y,lX,) are
both linear in x, and X,, respectively. Wold's theorem then implies that the regression
of ¥, on X, will give consistent predictions. Wold especially points out that the
assumptions about the sample moments are satisfied in the case of independent
replications of a controlled experiment, and in the case when the variables ¥ and X are
given as time series that are stationary and ergodic. Hodges and Moore (1972) also
point out the necessity that the values used in making forecasts are drawn from the
same stationary distribution and subject to the same sort of error to avoid prediction
bias. Unfortunately, as they write, this is often not the case and it is never true when
an independent variable follows a trend over time. They find it disturbing that if X,
is unbiased then any bias in the estimate of B "will be transmitted into a biased
prediction”. They then argue for trying to ensure that Xp and the estimate of B used in

the prediction are both unbiased.

Non stationarity can also appear as non-constant error variance in X,. Given only
preliminary data the error variance of the prediction period is greater than that of the
estimation period. Another reason would be unequal sample sizes for survey based X,
values. An extreme case occurs when the error variance in the prediction period is
zero, what will mean that predictions are made for a value of the true xp. In that
situation OLS is not suitable for prediction, at least not if T is large (sce e.g.
Malinvaud, 1970, p. 382).



Yum and Neuhardt (1984) examined the prediction problem for model (1) with
replicated observations on non-stochastic x. They studied the relative performance of
the OLS predictor and a consistently estimated predictor in terms of an integrated
mean square error of prediction (IMSE), where the integration is made over a range
of weighted possible values on x,. Yum and Byun (1990) develop IMSE for a
multiple regression model with non-stochastic regressors. They compare OLS with
two consistent estimators and suggest IMSE as a measure of overall, average

prediction accuracy when the variables are subject to error.

The idea of this paper is to study the performance of a predictor, Y=a+bX, of E(Nxp)
for different fixed values of the true x, . The predictors to be compared are mainly the
OLS predictor and a predictor based on consistent estimation of . This will be done
theoretically and by simulations for model (1). We will also study the problem with

unequal error variances of X;, both in the case of non stochastic and stochastic x.

2. THEORY
2.1, Estimation of the structural parameters. The size of the asymptotic bias
plim(d - B) of the OLS estimator (bprs) of B in (1) is related to the so called
reliability ratio, Koy g, according to:

Ly X -X)Y-Y
where bau=.£=r‘( z'(x 2(}_(_)2 )

and where Kgpg=0%/(6%,+02,).



There are several ways of correcting for such bias (see e.g. Fuller, 1987). If Kors is
known, an evident estimator of f is by ¢/K . For known error variance in X, Fuller

(1987, p. 193) suggests the following consistent moment estimator of § in (1):

M

Deuy, = v if A*=A- UTS 1,
o S —U-3ID)Ea 2 G
and
- Ser if A'=A- UT<l, (3b)

TSt LoL-(A-HEa
where A = Syx(1-R2yy)V/Zo?,,.

In (3) & is a positive constant, that will simply be set to one in this study. A is the
ratio between the residual sum of squares, when taking the reverse regression of X, on
Y;, and the sum of error variances in X,. This ratio is expected to be greater than or
equal to one since the error variance in X, is a part of this residual sum of squares.
However, in a sequence of observations, it can happen that A<1. This is a reason for
the modification in (3b), also excluding the possibility of a negative denominator. As
the denominator in (3) is bounded below by a positive number, the estimator has
moments. For further discussion of this estimator see Fuller (1987) and Jonsson

(1992).

If the error variance ozup of X, is different from the mean error variance during the

estimation period, then we propose the following modified OLS estimator:

Byous = S
M8 Sy -(1-8IT)(Za-Ta2)

if A*=A-UT>1. @)



If A*<1, a modification corresponding to that in (3b) is made. In estimator (4) we
correct for the discrepancy in error variance between the estimation and prediction
period. This modified OLS estimator (MOLS) gives an estimate of B corresponding
to that which would have been obtained by OLS if the error variance of X, had been

the same in the estimation period as in the prediction pericd. Hence the probability

limit of (4) is
o?
limb, =f —F—. 5
P MOLS B O'f + 0':, )

If x, is random and normally distributed, (4) will yield consistent predictions of ¥

given observed X,. The proof follows immediately from that of Johnston (1972, pp.

290, 291) for the case of equal error variances.
The estimate, a, of o is obtained from a=¥ —bX.

2.2 MSE for a linear predictor of E(Ylxp). Let us use model (1) for prediction and

let x, be a fixed number. Then the prediction error for any predictor ¥= a+bX, of

Ylix, is
Nxy ¥ = 0+ iy + gy + wy - a- bX, (©)

where a and b are estimates of o and B obtained from the estimation period sample

and hence independent of gp, wp and X, Taking the squared expectation of (6) yields

E(Ylxy- 1)2=E[E(YIx,)- 12 +02, +02,,. @)



The expectation of the squared prediction error of ylxp is obtained from (7) by letting
a2,,=0. The choice of predictor ¥ only affects the first term. Let us therefore in the

sequel study MSE of the predictor of E(Yx,)=E(ylx;). Hence the prediction error

now is:

E(Y/x,)-Y, =a+fx,—a-bX,. ®)

Denote plim a with o and plim b with B* and assume that the estimators have

moments. Taking the MSE of the predictor over Xp, givenx, yields:

MSE, = E(a+fie, —a-bX, )’
=E(a+fr,~o' -f'X, +a" +fX,-a-bX,)

=(a+fx,-a -f'x,) +7c, (A+B) &)
+E(a’ +f'X, —a-bX,) (©)
+2E(o+fx, —a" ~fX )&+ X, -a-bX)). (D)

The first two terms (A and B) are constants. The third term (C) can be rewritten as:

C=E(ax" +fXx,—a—bx,)’ +E( " -b)’cl. (10)

C is under general conditions of order T! (see e.g. Cramér, 1946, pp. 353-354).
Rewriting the cross product term D in (9) yields:

D=-2f'c},E(f" -b)+2(a+fx, - - f'x, ) E(e’ —a)+x,E(B' -5)] (1)
Since the expectations E(cc*-a) and E(8"-b) are of order T*1, also D is of order T'1.

The A and B terms are therefore, at least for large samples, likely to dominate MSE,
unless 02, is close to zero. It is worth mentioning this can easily be extended to the



case of several x variables. The term B in (9) then becomes E{(E. 8 i'u;,)’}, where the

summation extends over all x variables.

Let us focus on the sum of the first two terms in (9), A+B, that can be expressed as:
MSE, = B*{(K~1*(1t, - x,) + K’} where K = ﬂ%a . (12)

If the predictor is based on OLS, then K is equal to K¢ in (2), and for a consistent

estimator of 3 the ratio K is equal to one. The minimum of (12) occurs for
K=(u, -x,0 [[(4, = x,) +03,]. (13)

Let x, = u, +co, , where (t, is the mean and o2, is the variance of x in the estimation

period. X then becomes
K=620'f/[c20'3 +qu]. (14)

For equal error variances, 0%,,=0%, OLS gives the minimum of MSE, if the

observed X, comes from a true x;, at one standard deviation distance from the mean
(c=1). K is equal to one only if ¢ = o, unless czup is zero. Hence a predictor based on
consistent estimation of o and § is never optimal, unless x, is measured without error.
When the error variance in X, is different from that of the estimation period, a

predictor based on MOLS according to (4) will be optimal for c=1.

Now compare MSE, of OLS with MSE of a consistent estimator:

MSE, o5 — MSEcons = B *(Kous ~ D{(Kows ~D(H, = x, Y +(Kois + DA%} (15)



Letting 0,, =ro, and replacing o;, in (15) with &, = 10} (1= Ky;5)/K o5 yields
MSE o5 = MSE._cops = B * (Ko ‘1)2{(311 - -7} (Kois + 1o} /Kou}- (16)

For a predictor based on a consistent estimator to be better than the OLS predictor in
terms of MSE_, it must hold

(8, = x,)" >0} (Koys +1)/Koys (17a)
ie.
B, - x,|>ro, [+ , where 1+-22 since Kopss<l. (17b)

The interpretation of the inequality is: If X, comes from an x, with a deviation from
i, smaller than the right hand side of (17b), the OLS predictor should be preferred to
a predictor based on a consistent estimator. The expression (17) also tells us that the
gain from using OLS is increasing with decreasing Ky s. One faces the paradox that
the more important it is to adjust for measurement error, when estimating the
structural parameters, the more important it is to use OLS for prediction. This is so
although the bias of the OLS predictor increases as Kppg decreases. If the error
variance in X}, is greater than the mean error variance of the estimation period, the
relative gain from OLS increases. If the error variance in the prediction period is the
smaller one, the opposite holds and an extreme case occurs when we observe the true

xp. In that situation the optimal X is equal to one.

In Figure 1, the right hand side of (17b) with ;=1 has been plotted against K¢y g for
r=1 and for r=+2. This gives the number of standard deviations x, has to deviate

from p, in order for the predictor based on consistent estimation to produce better
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predictions than OLS. For instance, if X is equal to .8 and r is equal to one the
prediction x, must lie at least one and a half standard deviation from the mean for the
predictor based on consistent estimation to be better than the OLS predictor. When
the error variance in X, is twice the error variance in the estimation period, x, must

deviate with at least two standard deviations for this to be the case.

FIGURE 1. Distance ¢ { number of standard deviations) from g, that Xp has at least

to be in order for the OLS predictor to be worse than a "consistent" predictor. T=co.

0.4 0.5 0.6 0.7 0.8 0.9 1

Economic time series are often cyclical or/and contain trends. Let us therefore take a
closer look at these two situations under the assumption that x is non-stochastic and
start with the cyclical case. If x,=sin(nt/s) t=1...25, the variance of x; is .5 and the
maximum of x, minus y, is equal to one. The minimum of the right hand side of
(17b) is one for r=1, which means that a predictor based on a consistent estimator is

never to be preferred to the OLS predictor if r>1.

Assume in the trend case that x, ¢=1..T, is equally spaced between min(x,) and

max(x,)!. Then the variance of x; is:

1The probability limits of  and b then concern those obtained assuming a large number of
independent replications of the measurements on {x,, ....Xr}.
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oi o THl
* T YT-)

[max(x,)- ;t,)]2 ; (18)

Inserting this into (17a) gives

T+1
3(T-1)

(x, = 1,) >r [max(x,)= )] (14 L). (19)

Now assume that Xp=max(x;). It is then easily seen that the inequality does not hold
for r=1 and Kgp5<.5 or for all Ky if r221.5. Therefore OLS in these situations is
~ always to be preferred given min(x,)<x,<max(x;). Next assume that x;=mt, where m is
a positive constant, that the error variance in X, is proportional to the level of x, and
that we want to make predictions for the next observation, xy, ;. Then r=+2 and it is
possible to show that the OLS predictor is always better than one based on a
consistent estimator. Of course, this is the case for all 6%,,=02x" when m21. It is
also worth mentioning that there are other predictors that sometimes can do better
than both the OLS and the consistent estimator based predictor. An example is the
cyclical case where the minimum of (14) occurs for the maximum of x, when c=2.

In the trend case the minimum occurs for X7, ; when ¢2=3.

An alternative predictor in the case of unequal error variances is the MOLS predictor
based on estimation of B according to (4). The relationship between this predictor and
the one based on consistent estimation is obtained from (17) by letting r=1 and
replacing Kgpg with Kjsgrs. This means that all results from a comparison of a
predictor based on consistent estimation with the OLS predictor in the case of equal
error variances carry over to a comparison with the MOLS predictor in the case of
unequal error variances. One interesting special case occurs when x is measured
without error in the estimation period, but an estimate of xp is used when making

predictions. Then OLS is a consistent estimator of f. Hence the MOLS predictor will
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be better than the OLS predictor for a wide range of values on x, and an OLS
prediction is often not optimal in such a case. If the error variance is larger in the
prediction period than the mean of the error variances in the estimation period, it can

be shown that OLS is to be preferred to MOLS if

Kows + Kyors 1= Kyors a2 (20)
2= Ko+ Kyois) Kuas

(x,— pt,)} >

Since the MOLS predictor is optimal when Xp deviates by one standard deviation
from the mean, the MOLS predictor will always be best if xp lies within one standard
deviation from the mean. If the error variance of X, is smaller than the mean error
variance of the estimation X,, the MOLS predictor has smaller MSE,, than the OLS
predictor if (20) holds. The MOLS predictor will therefore always be a better choice

if Xp deviates by one standard deviation or more from the mean.

The reason for the relatively better performance of the OLS predictor than one based

on consistent estimation is the smaller B term in (9), K2B%02,,. This often

up-
compensates the bias of the OLS predictor. If possible, the term B should be reduced.
For instance, if the true x, can be assumed to have a cyclical pattern, then the changes
in the values from one observation to the next can be assumed to be small, and it
seems reasonable to smooth the observed X values in the prediction period in order to
reduce o*zup . The cost can be a greater bias, but this cost can be smaller than the gain.
The MOLS predictor then may be an alternative to the OLS predictor in accordance

with the earlier discussion.

Above we have assumed large samples so the C term and D term in (9) could be
disregarded. However, we know that at least the C term should be smaller for the

OLS predictor than for a predictor based on a consistent estimator because of a

smaller variance of the OLS estimator of B. A conjecture is, if we add this to the
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earlier results, we will get a wider area of values of x, for which OLS provides the
better predictor. The gain for OLS in the C term also increases with decreasing Ky 5.
If the error variance in Xp is greater than the error variance in the estimation period,
the MOLS estimator of § may have a smaller variance than OLS, possibly resulting in

a relatively smaller C term.

3. A SIMULATION STUDY

3.1 Introduction. In this section some simulation experiments will be performed to
illustrate the earlier discussions and to compare different predictors in the case of
small samples. The model to be used to generate observations on {;, X;} is model (1)
with f=1. In the first set-up x, is normally distributed. In the other experiments x,
will be non-stochastic. The error variance in X, is assumed to be known. The
explanatory power of the true regressor? is set to .8 in all experiments. The predictors
to be studied are mainly the OLS predictor, the MOLS predictor and the predictor
based on the consistent estimator (3) of . The last predictor will be called the Fuller
predictor. These predictors will be used also in cases of unequal error variances
although other predictors based on weighted regression could have smaller variance.
The evaluation of the predictors in the cases of non-stochastic x; will be done by
comparing bias and root mean square error (RMSE) at the prediction of E(lep) . Bias
and RMSE for the predictors have been calculated from the following relationships
assuming the error in the prediction period to be independent of tpe errors in the

estimation period.

The prediction error is

E(Y/x,)-¥=a+ fix,—a—bx, —bu,. ©@D

Ry =1- (02, + 02, )%y
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Taking the expectation of (21) over u,, yields

Up

Bias =E(a + fix, —a—bx,). (22)

MSE of the predictions can easily be shown to be

MSE = E(a + fix, —a—bx,)’ +E(b")d.,. (23)

For each x;, the bias can be estimated by the mean of the simulated prediction errors,

@+ fix, —a-bx,. An estimate of MSE is obtained by averaging the squared errors

and the squared slope estimates and then using (23) with known error variance.

3.2 Random x,. The first simulation experiment is performed to illustrate the
behaviour of the predictors when x;, is a random selection from the same population
that generated x; in the estimation period sample. x; is assumed to be normally
distributed with zero mean and variance equal to .8. In the estimation period sample
62, is equal to .2 and in the prediction period o2, is set to .2 in a first set-up and
then changed to .4 in a second set-up. The size of the estimation period sample is
T=50. The number of replications is 500. The simulation resuits for the estimators of
B are given in Table 1. We note that the means of the estimates are of expected sizes,
1 for Fuller, .8 for OLS and .667 for MOLS, and that RMSE for the Fuller estimator
is much smaller than for the other estimators. The number of replications when A* in
(3) is less than one is only five. Hence there are few such "bad" samples. For a

discussion of these matters, see Jonsson (1992).

TABLE 1. Some results for the estimators of 8=1.

OLS FULLER | MOLS, 0?,,=4 | Noof repl. A*<1
Mean(b) 795 1.004 .661 5
RMSE 223 133 347




The results from the prediction evaluation are summarised in Figure 2. In Figures 2A
and 2B the prediction errors according to (21), obtained with the OLS predictor and
the Fuller predictor, are plotted against x, for the situation when o? up=-2. The Fuller
predictor gives at least approximately unbiased predictions of E(¥lxp). This is not the
case for OLS. In Figures 2C and 2D the prediction errors are plotted against
observed X;,. The Fuller predictor yields biased predictions of E(Y1X),) and now the
OLS predictions seem to be unbiased. It can also be mentioned that RMSE for the

500 predictions is somewhat smaller for OLS than for the Fuller predictor.

Figures 2E and 2F present results for the situation when the error variance in the
prediction period is assumed to be twice the error variance in the observation period.
The compared predictors are the OLS and the MOLS predictors. We note that the
OLS predictor produces biased predictions of E(YIXP » unless X, is close to its mean,
while the MOLS predictor, that takes account to the change in error variance, gives
approximately unbiased predictions for ail Xp. RMSE for the MOLS predictor is only
marginally smaller than for OLS, when calculated over all observed X, but the gain

with the MOLS predictor increases with the distance of X, from its mean.

3.3 Non-stochastic and cyclical x. In this section x, will be treated as non-stochastic
and cyclical according to x,=sqrt(1.6)sin(n#/12). The estimation period consists of
two whole cycles (T=48) and the prediction period of one cycle (r=49:72). This
makes it possible to evaluate the predictors when the true xp comes from different
parts of a cycle. When x; has a cyclical pattern we often have an idea based on earlier
Xr-values of the cyclical position of x,. The variance of x, over a cycle is .8. 62, will
first be set to .2 and in a second set-up to .4, which means that K¢ will be .8 and
2/3, respectively. A trial will also be made by smoothing the observed X, by
successively taking the average of the last two observations of Xp. Bias and RMSE
are calculated from (22) and (23) with xp replaced by the corresponding smoothed

value and with the error variance in X, divided by 2. Furthermore an attempt is



FIGURE 2. Prediction errors of the OLS predictor, the Fuller predictor and the
MOLS predictor plotted against true x, and observed Xp when 02,,=0?, (equal error
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variances) and when ozup=20'2u (unequal error variances).
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made to see how the predictors behave if the cycle under the prediction period has a
greater amplitude. This will be done by letting the variance of x; in that cycle be
twice the variance during the estimation cycles. The number of replications is set to

500.

Results from the estimation of § are given in Table 2. The estimates of B are on
average somewhat greater than the corresponding probability limits (=K, as f=1).
RMSE for the consistent estimator is about 60% of RMSE of the OLS estimator
when Ko;g=8. The corresponding number for K;¢=2/3 is 50%. Hence, when

estimating the structural parameters the consistent estimator outperforms OLS.

TABLE 2. Some results from the estimations of 8=1.

Knr¢=0.8 Knre=2/3
Mean b RMSE Mean & RMSE
OLS 813 .19947 .681 .3294
FULLER 1.018 .1243 1.027 .1687
No of repl. with A°<1 7 66

Results from the prediction evaluation are presented in Figure 3. Starting with the
results for the OLS predictor (OLS) and Fuller predictor (FULLER), applied without
smoothing X, and in the case of equal amplitudes (figures A, B, C and D), we note
that the OLS predictor yields biased predictions while the Fuller predictor produces
approximately unbiased predictions. However, RMSE is always smallest, even if we
know that we are at the top of a cycle, for the OLS predictor. The picture is the same
for Kop5=8 and Kp;¢=2/3, but the gain with OLS is larger for Ky g=2/3. All these
results are expected according to the discussion in Section 2.2. The reason for the
better performance of OLS is its smaller B term in (9). In the case of smoothed X,
this term will be reduced by 50%, while the bias term will only marginally be
affected for both the OLS and the Fuller predictor, making the Fuller predictor more
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FIGURE 3. Bias and RMSE for different predictors when x, is cyclical.
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competitive. The results presented in the smoothed case are for the Fuller predictor
(FULLER-MEAN) and the MOLS predictor (MOLS-MEAN). As can be noted, the
prediction errors of the Fuller predictor are much reduced, but the MOLS predictor
mostly yields better predictions for Kops=.8 and always for K7 ¢=2/3. Smoothing the
X, values also during the observation period in combination with OLS (not in the
figure) gives almost identical results as for the MOLS predictor on smoothed Xp. Itis
also worth mentioning that the OLS predictor, when only Xp was smoothed, produced
a somewhat larger RMSE on the average than the MOLS predictor. Only when Xp
was close to the mean of x,, OLS provided a better predictor. These results, too, are

consistent with those of Section 2.2.

Figures 3E and 3F show the results for the case when the cycle during the prediction
period has a greater amplitude. In the case of non smoothed Xp the Fuller predictor is
now to be preferred to the OLS predictor at the top and at the bottom of the cycle,
while the OLS predictor is still better elsewhere. It can also be noted that the

potential gain from smoothing can be questioned in this case.

3.4 Non-stochastic x, with a trend. In this section the trend case will be studied by
letting x, be equal to . The error variance in X is first assumed to be constant and
determined so that K¢ 5=.8. In a second experiment the error variance is assumed to
be proportional to x, 6%,=0%. In many situations this is a more realistic
assumption than that of a constant error variance. The estimation of the parameters
will be performed for two sample sizes, T=50 and T=200. Predictions will then be
made when T=50 for Xp=26...70 and when T=200 for xp=101..230. The within
sample predictions makes it possible to study exactly when a predictor is better than
another. The number of replications is set to 1000. The estimation resuits are found in
Table 3. The estimators seem to have a small positive bias for T=50. The consistent
estimator is superior to the OLS estimator in terms of RMSE. This is especially the
case for T=200.
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TABLE 3. Some resuits from the estimations of f=1.

Equal error variances Unequal error variances
T=50 T=200 T=50 T=200
Mean b | RMSE | Mean b | RMSE | Mean b | RMSE | Mean b | RMSE
OLS .807 .209 .803 .201 .807 210 .803 201
FULLER 1.011 .122 1.005 .060 1.011 124 1.005 .063
No repl. 10 0 14 0
At<1

In Figures 4A-D bias and RMSE obtained in the prediction evaluation are plotted
against x,=t in the case of constant error variance. This is done for the OLS predictor
and the Fuller predictor and the mean of these two. As can be noted, the bias is large
for the OLS predictor when x;, lies far away from the mean of x, in the estimation

period, while the bias for the Fuller predictor is always of negligible size.

Looking at Figure 4C, we note that RMSE of the OLS predictor is smailler than
RMSE of the Fuller predictor up to a Xp equal to 52. Hence OLS provides the better
predictor even for a value of x, outside the range of the x, values used for estimation.
This is not the case for T=200. The predictors then do equally well when x, is about
190. Thus the OLS predictor is the one to be preferred of the two predictors for T=50,
unless the prediction is made for a long forecast horizon, while the Fuller predictor is
to be preferred for =200, also for a short horizon. As can also be noted from Figures
4C and 4D, there is at least one other predictor that is better than both the OLS and
Fuller predictors for values on x, that lies around 7, namely the mean of the two

predictors.

RMSE for the case with error variances in x, proportional to x, is presented in Figures
4E and 4F. The OLS predictor is now always better than the Fuller predictor over the
studied range of xp values . Furthermore it can be noted that the MOLS predictor is

behaving as the OLS predictor in the case of equal error variances. If instead we




FIGURE 4. Bias and RMSE for different predictors when x,=t. Estimation periods are
for T=50 and T=200. Predictions are made from %p=26 and x,,=101, respectively.
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assume a negative trend in x, (>0), this implies an error variance of X7 that is less
than the mean error variance of X; in the estimation period. The choice will then be
between the MOLS predictor and the Fuller predictor, at least if the estimation sample

is large.

3.5 Decomposition of MSE. Let us in some of the situations studied above
decompose MSE into squared bias (A), the term B (8*202,;) and the remaining part
of (9) (C+D). The predictors that are compared in the analysis are the OLS and the
Fuller predictors. The decompositions are for the cyclical case with Kg; 5 equal to .8
presented in Figures 5A and 5B. The results for the trend case with 7=50 are to be
found in Figures 5C-F. Figures 5C and 5D show the decompositions of RMSE for
the case of constant error variance, and Figures SE and 5F show the results for the

case with error variance proportional to x,.

For all situations the results show that MSE of the OLS predictor (Figures 5A, 5C and
5E) is dominated by the bias term plus the B term and MSE of the Fuller predictor by
the B term (Figures 5B, 5D and 5F) . We note for the OLS predictor that the bias
term in the cyclical case is never large enough to compensate the larger B term of the
Fuller predictor. The opposite holds for large x, in the trend case when a constant
error variance is assumed All these results are consistent with the results from the
theoretical derivations in Section 2.2. The remaining part of MSE often plays a minor
role. We note that this part is overall smaller for OLS than for the Fuller predictor.
This is what makes the Fuller predictor better than an OLS predictor only from =52
on, in the case of a trend and a constant error variance. It is also worth mentioning
that the remaining part of MSE had probably been smaller if a greater value on the
R2y, had been chosen or if larger estimation samples had been used. The effect is
presumably largest for the Fuller predictor, making it a little bit more competitive
with the OLS predictor. However, this will not change the main results.



FIGURE 5. Decomposition of MSE when x, is cyclical (K, ¢=0.8) and x=t (T=50).
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A situation when the sum of the C and D term can constitute a large part of MSE
occurs when we want to make predictions conditional on a true x,. The B term is then
zero and we note that the Fuller predictor is better or much better than the OLS
predictor, unless xp is close to the mean of x; See also Stanley (1988) for a

simulation study in the case of known x,.

4. SUMMARY

The problem under study in this paper is how to do predictions on the basis of a
simple linear regression model when the independent variable x; is measured with
errors. It is well-known that OLS, conditional on observed X, provides consistent
predictions if the prediction value X on X, can be assumed to be a random selection
from the same normal distribution that generated the estimation period sample. This
is not the case if the error variance in X, differs from that of the estimation period. A
modified OLS predictor, which takes this into account, based on known error

variances, is proposed and can be shown to produce consistent predictions.

The paper focuses on predictions when the true xj, cannot be assumed to be randomly
selected. The idea is to compare MSE of some predictors in the form ?=a+bXp for
different fixed values on the true x,. It is shown that x, has to lie rather far away
from the mean of x, in the estimation period, sometimes even outside the range of the
estimation period x, values, for the OLS predictor to be worse than a predictor based
on consistent estimation of the slope parameter (). The reason is that a term, equal to
the error variance in the prediction period multiplied by the squared probability limit
of the estimator of B, enters MSE. That term can be much larger for a predictor based
on consistent estimation than for the OLS predictor which will often make the OLS
predictor the best one even if it produces a large bias. In the case of unequal error

variances it is shown that the modified OLS predictor behaves as the OLS predictor in



the case of equal error variances. Some guidelines are also given when to use the
Modified OLS predictor instead of the OLS predictor. One special case occurs when
Xp is measured with and x; in the estimation period sample is measured without errors.
Then the OLS predictor provides unbiased predictions, but the Modified OLS

predictor will yield better predictions in terms of MSE for a wide range of values on

xp.

Special investigations have been made for the cases when X% is cyclical and when x,
follows a trend. When x, is cyclical with constant amplitude, it can under certain
conditions be shown that the OLS predictor is better than a predictor based on
consistent estimation. Smoothing the X values used for prediction can in such a
situation be worth trying in order to reduce the prediction error. In a simulation study
the modified OLS predictor in most cases produced better results than the consistent
predictor applied on smoothed Xp. For the case when x, follows a linear trend (x=0)
and the error variance is proportional to Xy it was shown that OLS is to be preferred
for short forecast horizons. A simulation study showed that this could also be the case
for longer horizons when small samples are used. Even when the error variance was
constant the OLS predictor did better for a sample size of T=50 than the predictor

based on consistent estimation when making predictions for T+ 1.
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Sammanfattning

Tidsseriedata 4r ofta behiftade med fel av olika slag. Mitningarna kan exempelvis
vara prelimindra eller vara surveybaserade. Skattningar av ekonometriska modeller
baseras ofta pd tidsseriedata. Ett exempel ir niir data frin surveyer rérande hushillens
attityder till den ekonomiska utvecklingen och deras planer om bilink6p anvinds som
forklarande variabler i konsumtions- eller investeringsfunktioner. Eftersom dessa
variabler 4r baserade p4 urval och siledes mitta med fel, kommer deras parametrar att
bli underskattade i absoluta tal om vanlig minsta-kvadrat metod (OLS) anvinds. I
Jonsson (1992) studeras mot bakgrund av de svenska hushillens attityder och planer
effekten av urvaisfel pd skattningen av riktningskoefficienten i en enkel linjir
regressionsmodell, ndr regressorn bestdr av proportioner. Jonsson fann att effekten
kunde vara betydande i vissa fall. Estimatorer som korrigerade for den nimnda
underskattningen studerades ocksd och befanns ofta fungera vil relativt OLS.
Huvudsyftet med att anviinda attityd och plandata #r dock ofta inte estimation utan
prediktion och vad giller d47 Om det X-viirde for vilket énskas en prognos kan anses
vara slumpmissigt draget ur samma population som gav estimationsstickprovet ir det
kint att prediktion baserad pi OLS bér anvindas. I exemplet ovan ir det tveksamt om
detta kan antas - tidsserierna har tydliga cykliska monster och dessutom varierar
mitfelsvariansen Gver tiden. I denna rapport utreds hur olika prediktorer baserade pd
observerade tidsserier fungerar for olika sanna virden (xp) pd prediktionsvariabeln.

Resultaten kan sammanfattas i f5ljande punkter och ir i termer av medelkvadratfel:

Konstant miitfelsvarians. En prediktor baserad pi OLS-estimation bor foredras
framfor en baserad p# konsistent estimation om inte X, ligger langt ifrin medelvirdet
av x i estimationsstickprovet. Som exempel kan nimnas att om x ir cyklisk ir OLS
alltid att foredra. En simuleringsstudie visar att OLS kan vara att foredra dven i fallet
med en trend i x, om prediktion gors for nista observation och antalet observationer

ej dr stort.
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Olika miitfelsvarians i prediktions- och estimationsperiod. Om mitfelsvariansen
4r storst under prediktionsperioden vixer det omrdde for vilket OLS bér foredras
framfér en konsistent skattad prediktor. En prediktor baserad pd estimation dir

hénsyn till skillnad i métfelsvarians tas kan dé vara ett alternativ.

En paradox. Ju viktigare det ir att justera for mitfelet dd syftet ar estimation, desto
viktigare ar det att bevara OLS for prediktion. Detta giller trots ett vixande

systematisk prediktionsfel for OLS.
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