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Abstract

Asymptotic tests for fractional integration are usually badly sized
in small samples, even for normally distributed processes. Further-
more, tests that are well-sized under normality may be severely dis-
torted by non-normalities and ARCH errors. This paper demonstrates
how the bootstrap can be implemented to correct for such size distor-
tions.
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1 Introduction

Many financial time series display observations that are non-normally dis-
tributed (i.e. with excess skewness and kurtosis), conditionally heteroskedas-
tic and ruled by long memory. For instance Ding, Granger and Engle (1993)
report evidence of autocorrelations between distant lags in the absolute re-
turns of the Standard and Poor 500, S&P500, composite stock index. Fur-
thermore, Granger and Ding (1995) show that the absolute value of the rate
of return for a variety of stock prices, commodity prices and exchange rates
exhibit excess skewness and kurtosis.

Long memory is usually described by a fractionally integrated specifica-
tion, hence testing for long memory may be performed via a test for a frac-
tional differencing power. The asymptotic tests often exhibit non-negligible
size distortions in small samples. To improve inference, this paper suggests
parametric bootstrap methods to adjust the critical values. We seek tests
that are robust to short-term dependencies, non-normalities and ARCH ef-
fects in data. The performance of a bootstrap test depends to some extent
on the chosen resampling algorithm, it has better size properties than the
corresponding asymptotic test.

The paper unfolds as follows. Section 2 introduces the fractional integra-
tion bootstrap testing procedure and Sections 3 and 4 presents the Monte
Carlo setup and the size and power of the tests. Section 5 concludes the

paper.

2 The Fractional Integration Bootstrap Test

2.1 Testing for Fractional Integration

A fractionally integrated autoregressive moving average (ARFIMA) time se-
ries process {z;} is described by the equation

¢$(BY(1—B) 'z, =0(B)a;, t=1,...T (1)

where the roots of ¢ (B) and 0 (B) are all outside the unit circle and a; is
#d with mean zero and finite variance o2. The differencing parameter d is
allowed to take any real number, but if d is restricted to the set of integers the
specification (1) reduces to an ARIMA process. The sample autocorrelation
function of a long memory process may be approximated by a fractionally



integrated model, hence testing for long-memory can be done by a test on d.
Such tests are applicable on stationary and invertible! series, and the series
should be differenced or summed until this is satisfied. Thus, d = 0 is a
natural null-hypothesis when testing for fractional integration.

We consider three tests, namely, the log periodogram regression of Geweke
and Porter-Hudak (GPH, 1983), the modified rescaled range (M RR) statis-
tic, Lo (1991), and the LM test, denoted REG, of Agiakloglou and Newbold
(1994). Cheung (1993) reports evidence of serious size distortions for the
tests. Our idea is to correct for the distortions using bootstrap methods.

2.2 The Bootstrap Test

The bootstrap, described by Efron and Tibshirani (1993), provides a feasible
method for estimation of the small-sample distribution of a statistic. If the
exercise is bootstrap hypothesis testing the bootstrap samples must obey the
null hypothesis and, as far as possible, resemble the real sample.

Asymptotic theory is only exact if the p-value is independent of the actual
data generating process and sample size, which is usually not the case. A
small sample solution is to replace the p-value by the bootstrap counterpart,
which can be estimated as

53 =S 1171 > ) @)
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where R is the number of bootstrap replicates, I (-) the usual zero/one in-
dicator function, 7 a realized value of the test statistic 7 based on a sample
x ={z1,...,2p} and 7} the value of the same test statistic, based on the
bootstrap resample x: = {z},, ..., zk }.

The theory of bootstrap testing is given by Davidson and MacKinnon
(1996, 1999a). They show that if the test statistic is (asymptotically) pivotal,
that is independent of nuisance parameters, the size-distortion refinement is
of order T—/? when using the bootstrap p-value compared to the correspond-
ing asymptotic. A further refinement, usually also of order 7~'/? is obtained
whenever the test statistic is independent of the bootstrap DGP. Moreover,
the power of a bootstrap test, based on a pivotal statistic, is generally close

IStationarity and invertibility require that d < [1/2|. The ARFIMA model is presented
in greater detail by Granger and Joyeux (1980) and Hosking (1981).



to the size-adjusted asymptotic test. Even if the statistic is only close to
pivotal this is true in most cases.

Davidson and MacKinnon (1999b) demonstrate that a small number of
bootstrap replicates imply a loss in power and that at least R = 399 is
required to guarantee a power loss of no more than 1% at the 0.05 level. The
size of a bootstrap test is less sensitive to the number of replicates. We use
399 replicates, but we have also compared the results with R = 999 for a
selection of the parameter values considered. The size and power are altered
only slightly when using larger number of bootstrap samples.

2.3 Construction of the Bootstrap Samples

For the construction of the bootstrap samples we use a model-based ap-
proach, which is natural since a well-defined model constitutes the null hy-
pothesis. The bootstrap B,, which is constructed to preserve ARCH(1)
dependence in the residuals, is conducted as follows:

1. Estimate the AR(p)-ARCH(1) model
(1 — ¢0 — ¢1B — ... — ¢po) (Z’t) = 0, Qi ’It,1 ~ N (O,Wt) (3)
we = Py +51at2—1

which clearly obeys the null-hypothesis, which is crucial. The autore-
gressive order p is determined by the BIC and the parameters are es-
timated through maximization of the log-likelihood function according
to the Davidon-Fletcher-Powell algorithm, see Press et al (1992).

2. Due to the assumed normality of the disturbances a; in (1), the boot-
strap residuals {a}} are constructed accordingly; let £f be an indepen-
dent draw from a N (0, 1) distribution, and compute

O = Bo+ Ba,

* x [~
a, = &\ Wy

3. Finally, the bootstrap samples x, r = 1,...,399, are created by the
recursion

= ¢(B) af, (4)

where ¢ (B) is the estimated polynomial of (3).
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Of course, the procedure is not limited to ARCH(1) errors, it can easily
be extended to unknown lag-orders and GARCH processes. The reason for
only considering ARCH(1) processes and a pre-specified lag-order is purely
time saving, bootstrap-Monte Carlo studies are computationally demanding.

For the sake of comparison, a simple bootstrap version, which ignores the
ARCH, is also included. This resampling, denoted bg, draws residuals a;}
independently and directly from a normal distribution with mean zero and
variance s2 and the resamples are created using eq. (4).

Moreover, beside the two resampling schemes above we have also tried two
nonparametric ones: one resampling where ARCH in errors are incorporated
and one simple nonparametric.

3 Monte Carlo Design

The experiment covers first-order autoregressions and fractional noise series
of lengths T' = 50, 100, 200, 300 and 500. We generate 1"+ 100 error observa-
tions by the IMSL routine (D)RNNOA, and discard the first 100 observations
to reduce the initial value effect. The AR series are then constructed recur-
sively and the fractional noise series are generated by Cholesky factorization
of the ARFIMA error covariance matrix.

The Monte Carlo study is programmed in FORTRAN (using the Digital
Visual Fortran 5.0 compiler) and involves 10,000 trials (series). Each series is
tested for fractional integration using the tests in Sections 2. Estimated size
and power of the different processes are computed as the rejection frequencies
of the non-fractional null hypothesis.

The size is examined for the autoregressive datagenerating process (DG P)

Tt = Qx1_1 + ay (5)

and the power is studied using data constructed by

(1—B)%z =e,. (6)

The members of {a,} and {e;} are iid N(0,1). We report results for ¢ equals
0.0,0.5 and 0.9 and d equal to £0.05, +0.25 and +0.45.

Besides normality of the disturbances, we also construct data which dis-
play non-normality (excess skewness and kurtosis) and ARCH errors.
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In the non-normal case, the disturbances a; (and e;) are distributed with
skewness and kurtosis equal to vy, and v, respectively, by the Fleichmann
(1978) transformation. ~, and <, are chosen to generate series z; with a
skewness and kurtosis of 2 and 9.

For the final set of processes the disturbances are conditionally distributed
as ay—1 ~ N (0,w;), where wy = 1 — 8+ Ba?_; and § is selected as 0.5 and
0.9. e, is constructed equvivalently.

4 Results

Table 1 presents the sensitivity, at a nominal 5% level of significance, of the
empirical size of the tests. The power of the bootstrap tests are presented in
Figure 1. The reason for not including the power of the asymptotic tests is
that we only compare tests that are (approximately) well sized.

The estimated size of the asymptotic Geweke and Porter-Hudak, GPH,
test differ from the nominal, when the autoregressive parameter assumes a
large positive value. Furtermore, the test is robust to excess skewness and
kurtosis, and conditionally heteroskedastic errors, in the sense that the results
are similar to the normal case.

The size problems of the GPH test are adjusted by both bootstrap pro-
cedures, and the bootstraps do not impose distortions where the asymptotic
test is correct in size. The robustness of the asymptotic test can be detected
in the bootstrap procedures since the simple bootstrap works as well as the
ARCH resampling for all investigated combinations of ¢ and f3.

For short series, the bootstrap GPH tests have a very poor ability to de-
tect a fractional difference no matter of the size of the differencing parameter.
The power increases steadily with the sample size and at T' = 300 we are
likely to track down (in particular positive) fractional integration. Through-
out, we notice that the ARCH bootstrap has a slightly lower power than the
simple one, thus we conclude that the GPH test shall be combined with the
simple bootstrap.

The size of the asymptotic Modified Rescaled Range test also differs from
the nominal, notably, conservatively for large positive parameters. The size
distortion decreases as T" grows, but the rate of convergence appears to be
slow. The MRR test is fairly robust to excess skewness and kurtosis, and
compared with the case of no heteroskedasticity in errors the test tends to
be more conservative as the ARCH parameter increases.



In general, the bootstrap MRR testing procedure is able to improve the
asymptotic test; every bootstrap test has better size properties than any of
the original. In more detail, the bootstrap MRR test is, for the smallest
sample size, still conservative when ¢ = 0.9. However, the estimated size ap-
proaches the nominal as the serial length increases. The simple resamplings
work satisfactorily for normal and non-normal processes, but exhibit empiri-
cal sizes a bit below five percent given heteroskedasticity. Under ARCH, the
b4 bootstrap is close to exact, and is also works well when the error does not
follow the ARCH(1) specification.

The bootstrap MRR tests have well-behaved power curves, and appears
quite powerful when testing for negative fractional integration. For normal
and skewed errors we see that by generally exhibits a lower power than bg.
In the ARCH case, there is no most powerful bootstrap test and the test is
almost useless when testing for negative differences, that is d < 0.

The estimated size of the asymptotic Lagrange Multiplier REG test is
very close to the nominal five percent when the observations are normally
distributed. For skewed data with excess kurtosis, the empirical size is greater
than the nominal, but the difference is reduced as the sample size increases.
The REG test is also very sensitive to ARCH effects and exhibits a seriously
distorted size for # = 0.5 and in particular for § = 0.9, and the distortion
grows with 7.

Exactly as the asymptotic test, the bootstrap REG test based on the sim-
ple parametric resampling is well-sized for normal processes. The resamplings
that correct for the (non-existing) ARCH have reasonable, but conservative,
sizes. This is also the case for non-normal data. Given ARCH, the bootstrap
b, is not only superior to the original test, but also much better than bg.

The bootstrap REG test reduces in power when the true d is close to
0.5 compared to a slightly lower d value. When specifying the test, a large
fractional differencing power is interpreted as a large autoregressive (or mov-
ing average) order, yielding decreased rejection frequencies. For normally
distributed fractional noise, the ARCH bootstraps have a lower power than
the simple parametric b;. This is also the case for fractionally integrated
white noise with ARCH disturbances, but then the simple algorithm is not
advisable due to the size distortion.



5 Conclusions

The concept of bootstrap testing for fractional integration works extraordi-
narily well. If the significance level is calculated by a bootstrap procedure
a well-sized test is almost always the result. However, the choice of resam-
pling algorithm may affect the degree of size adjustment. For instance, if the
original test is sensitive to distributional assumptions, in particular ARCH
effects, this should be accounted for when specifying the resampling model.
If the test is robust to ARCH errors, the choice of resampling is not very
important for the size properties of that test.

Since economic and financial data are often heteroskedastic we recom-
mend the use of an ARCH resampling scheme for the REG test. On the
other hand, if prior information suggests that the investigated series does
not have ARCH effects, the simple parametric bootstrap has better size and
power properties.

The MRR and GPH tests, which are robust to deviations from the iid
normality of the disturbances, have nice size properties for all bootstrap
procedures. Due to the simplicity and the slightly higher power of the simple
algorithms, they are preferred when bootstrapping the MRR and GPH tests.

The main conclusions are that the bootstrap tests are remarkably well-
sized (whereas the asymptotic tests are not) and robust to non-normalities
and ARCH effects, and that reliable testing for fractional integration in many
cases requires a bootstrap test.

Acknowledgements

We are greatly indebted to Tor Jacobson, Sune Karlsson, James G. MacK-
innon and Paul Newbold for useful discussions and comments. The usual
disclaimer applies.



References

Agiakloglou, C. and P. Newbold, 1994, Lagrange multiplier tests for frac-
tional difference, Journal of Time Series Analysis 15, 253-262.

Cheung, Y.-W., 1993, Tests for fractional integration: a Monte Carlo inves-
tigation, Journal of Time Series Analysis 14, 331-345.

Davidson, R. and J.G. MacKinnon, 1996, The power of bootstrap tests,
Queens Institute for Economic Research Discussion Paper No. 937.
(Department of Economics, Queens University, Kingston, Canada).

Davidson, R. and J.G. MacKinnon, 1999a, The size distortion of bootstrap
tests, Econometric Theory, forthcoming.

Davidson, R. and J.G. MacKinnon, 19996, Bootstrap Tests: How many
Bootstraps?, Econometric Theory, forthcoming.

Ding, Z., C.W.J. Granger, and R.F. Engle, 1993, A long memory property
of stock market returns and a new model, Journal of Empirical Finance
1, 83-106.

Efron, B. and R.J. Tibshirani, 1993, An introduction to the bootstrap
(Chapman and Hall, New York).

Fleichmann, A.I., 1978, A method for simulating non-normal distributions,
Psychometrika 43, 521-532.

Geweke, J. and S. Porter-Hudak, 1983, The estimation and application of
long memory time series models, Journal of Time Series Analysis 4,
221-238.

Granger, C.W.J. and Z. Ding, 1995, Stylized facts on the temporal and dis-
tributional properties of daily data from speculative markets, Unpub-
lished manuscript, Department of Economics, University of California,
San Diego.

Granger, C.W.J. and R. Joyeux, 1980, An introduction to long-memory
time series models and fractional integration, Journal of Time Series
Analysis 1, 15-29.

Hosking, J.R.M., 1981, Fractional differencing, Biometrika 68, 165-176.

9



Lo, A.W., 1991, Long term memory in stock market prices, Econometrica
59, 1279-1313.

Press, H., Teukolisky, S., Vetterling, W. and B. Flannery, 1992, Numerical
Recipes in Fortran: The Art of Scientific Computing, second edition
(Cambridge University Press, New York, USA).

10



Table 1: Rejection percentage of the fractional integration tests when the
data follow an AR(1) process.

¢
T =50 T =100 T =200
0.0 0.5 09 0.0 0.5 09 0.0 05 09
Normal Errors
G As 53 80 61.0 52 6.7 704 59 6.1 T71.1
bs 49 41 4.2 52 48 3.3 5.5 55 3.0
by 46 3.6 4.0 5.0 4.5 3.2 5.5 52 3.0
M As 6.9 23 0.7 6.7 25 1.0 6.5 38 1.6
bs 5.1 41 35 5.5 5.0 4.0 5.2 5.3 44
bp 51 42 32 5.3 49 3.7 5.3 54 45
R As 50 58 5.2 50 6.0 5.2 4.7 58 5.0
bs 40 45 44 46 50 4.8 4.7 50 4.6
bgs 2.1 39 23 29 36 27 41 3.6 3.3
Non-normal Errors
R As 6.8 85 11.5 5.3 6.3 85 5.0 59 6.8
bs 45 4.0 3.6 44 42 39 4.5 48 39
by 2.1 31 1.5 2.8 32 23 3.6 41 33
ARCH Errors, 3=10.9

G As 52 7.8 595 5.3 6.7 69.8 5.1 5.5 705
bs 46 39 3.8 5.1 48 38 5.2 51 5.0
ba 54 47 47 51 4.7 44 5.3 5.3 44
M As 3.1 15 05 3.1 1.8 09 32 21 1.0
bg 3.5 38 4.3 3.4 34 4.2 3.3 32 41
ba 44 49 48 48 50 4.9 46 53 438
R As 272 266 30.2 26.9 26.2 32.1 30.0 28.6 384
bg 6.0 53 6.7 7.6 6.6 85 10.2 7.9 10.3
by 25 33 3.2 3.5 39 35 3.8 44 44
The entries are rejection percentages of the two-sided nominal 5% test.
As denotes the asymptotic test and bg and by the bootstraps. G, M
and R denote the GPH, MRR and REG tests. Under non-normality,
the skewness and kurtosis are 2 and 9 (respectively) for all processes. 3

denotes the ARCH parameter. The results are based on 10,000 trials.
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Figure 1: Rejection percentage of the nominal 5 percent GPH test when the
data follow an ARFIMA(0,d,0) process.
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See note to Table 1.
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