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INTRODUCTION

The most commonly used methods for analysis of economic time series operate in the
(real) time domain. This is the case for analysis of interdependent systems, ARIMA
models, cointegration etc. The frequency domain did not become a reai alternative until
the 1960's with the advent of modem computers. For a decade or so, quite a large number
of papers treating spectral methods were published (see Granger and Engle (1983)). Most
earlier works in econometrics which used complex demodulation analysed a single time
series or the phase lag between two series. Granger and Hatanaka (1964) found the results
of the method contradictory as regards phase lag between the US industrial production
index and layoff rate in different frequency bands (most probably caused by the poor
filters and numerical algorithms available at that time). An excellent analysis of the
Australian business cycle based on complex demodulates was presented by Burley
(1969). A general description of the theory and some applications is given in Banks
(1975) and Hasan (1983).

Working in the complex demodulate domain allows elegant and efficient analysis of
economic time series. The data is Fourier transformed, filtered into frequency bands of
interest, shifted in frequency and transformed back into the time domain. This produces
time series of estimates of the real and quadrature parts (amplitude and phase) of the
energy within each given frequency band. By truncating the spectrum prior to inverse
Fourier transformation we can obtain estimates that are (almost) independent. Reducing
the number of data in this way allows increased computational efficiency without the loss
of any useful information. The series are decomposed into parts that are both time and
frequency dependent, and which are near-optimally resampled in the complex time
domain (two degrees of freedom per complex sample). That is, the time sampling
obtained is related naturally to the frequency band-width of the signal we are examining.
By forming the covariance matrix of the demodulates we can analyse most of the linear
structural models commonly used in econometrics. However, by operating in the complex

demodulate domain we retain the phase information throughout the processing, which



means that the models in certain aspects are more general than their real time domain
counterparts.

Due to the fundamental equivalence of the time and frequency domains, the complex
demodulate series can be regarded either as complex time series or as time-local spectral
estimators. In order to generate the time-local covariance matrices we must choose a
frequency band. We can choose any frequency window in the range from zero to the
Nyquist frequency. Naturally, we try to choose the frequency band that provides the
greatest signal enhancement for the particular phenomena we are examining.

In a recent research report, Bergstrom (1991) studied the relation between production and
a number of series from the Swedish Business Tendency Survey (BTS). Bergstrom, using
the traditional econometric methodology, found that there is a reasonably close
relationship between the barometer series describing changes in the volume of production
and the annual changes in the ordinary volume series of total manufacturing in Sweden.
Including the volume series of the BTS significantly improve the best autoprojective
model for the ordinary volume series. Bergstrom also considered about 25 other
barometer series, none of them were found to provide additional information.
Oller (1990), in a study of the business cycle for the Finnish forest industry, found that
the business survey data were useful in monitoring and predicting the business cycle and
its turning points. While his models were all in the time domain he used spectral
information together with conventional auto- and cross-correlation plots in the initial

model-building stage.

In this study we will use frequency and complex demodulate methods to illuminate the
relationship between manufacturing and the various BTS-series. In Sections 1 and 2 we
give a short description of complex demodulates and complex-valued regression.
Section 3 gives a brief presentation of the data used and Section 4 presents the results of

the analysis. Finally in Section 5 we give a short summary of the main findings.



1. COMPLEX DEMODULATION

The theory of complex demodulation is well described in the literature (Bingham,
Godfrey and Tukey, 1967; Banks, 1975; Hasan, 1983; Roberts, 1984; Roberts and Dahl-
Jensen, 1989) and here we present only a summary. If a time series x(t) is shifted in
frequency by w

X'(Lw) = x(1) e-iwt (L.1)
and low-pass filtered from frequency +éw to -dw by convolution with the series a(t)

Xd(t,w) = alt) * x'(t,w) (1.2)
we obtain the compiex demodulate time series Xq(t,w) which contains instantaneous
estimates of the real and quadrature parts (easily converted to amplitude and phase) of the
density within the frequency band w -6w to w +&w. The operations described by equations
(1.1) and (1.2) can be achieved efficiently using the Fast Fourier Transform (FFT). The
data is simply transformed to the frequency domain, band-pass filtered, shifted in
frequency and transformed back into the time domain. We can, if we wish, truncate the
part of the shifted spectrum that contains no energy before transformation back into the
time domain. Reducing the number of data in this way greatly improves the efficiency of
the inverse Fourier transform, and provides a complex time series in which neighbouring
estimates are (almost) independent, allowing increased efficiency during later processing.

Note that:

(1) This truncation does not imply the loss of any useful information.

(2) As the relevant elements in the inverse Fourier transformation are identically
equal to zero, this truncation has no effect on the time samples which we calculate
(but we calculate samples at fewer time points than if we had not truncated).

(3) It follows from this that the time domain leakage effects are essentially the same
as for any filtering procedure.

(4) Sampiing theory shows us that the spacing of the zeros of the time domain sinc!
function associated with the inverse FT coincides with the sampling rate, i.e. even
for finite time series neighbouring demodulates can be completely independent.

(5) In practice it is rare to have completely independent demodulates because of
windowing of the data, retention of some zeros when calculating the inverse FFT

Lsine(x) = sin(x) / x



etc. To avoid interdependence caused by frequency domain zero padding, we could
consider using the direct inverse Fourier transform, rather than the FFT.

From the point of view of processing, the choice of frequency bands is arbitrary. Thus
e.g. frequency bands can overlap (but in this case we loose orthogonality between
demodulates in different frequency bands). Obviously, when analysing real data, the
choice of frequency band is critical in helping to isolate the signal of interest and to
enhance the signal to noise ratio. If we shift the time series in frequency and reject only

the original negative frequencies we can obtain a complex time series that retains all the

information contained in the original time series.

Whilst on the subject of Fourier transformation of economic time series it is perhaps
worth mentioning that the varying length of months, the number of weekends in a given
month etc. can lead to some aliasing problems, but that these problems are well defined
and it is easy to demonstrate that from the point of view of the analysis procedures

presented here these effects are of little significance.

We now examine an important property of complex demodulates. Defining the spectrum
of the real infinite continuous time series x(t) in terms of amplitude M(w') and phase (¢"

of the spectrum at frequency w":
X(w')= M(w) eié(@) .

Then using the Fourier transform

xX() = [ X(w)el@'td' = [ M(e) eld(@eio'tdy .

Thus _
x'(t,w)= I e-lotM(y) eid(w@)eiw'tyy,

and

w+dn': .
xdtw) = [ell(@-)t+é(@)}A(w)M(w) do'
w-dw



dw
= [eil(w-w)t+d(w)} A(w)M(w") d(w'-w),
-dw

where A(w') represents the Fourier transform of the filter a(t), and the filter coefficients

are zero for frequencies > w+6w and < w—dw.

Now consider another time series

¥ = [B(w) ele(@)eiw'tqq,
where

B(w) = rM(«"),
and

B(w) = p(w) =k,

and k and r are constant over frequency, i.e. the amplitude spectra are linearly related and
there is a constant phase difference between the two series. We can write the transfer
function (complex amplitude ratio) between any pair of points in the two demodulate

series at time t as

dw
[eil(@-I+d(@)} Aw)M(w) d(w-w)
-dw
= dw '
| el (W-@)t+e(w)} A(w)B () d(w'-w)
-dw

T

As k and r are constants

dw
[l (@~} A(IM(e) d(w'-w)
-dw ' elk
T= dw =70
reik [el{(@-w)t+¢())} A(Ww)M(w) d(w'-w)
-dw



Then
1

1T
and

tan() = gec,

Le. if the spectra of the two time series are linearly related in amplitude, but phase shifted
with respect to each other by a constant, then we can recover this constant exactly, simply
by calculating the phase of the transfer function between any pair of complex

demodulates from the two series. This also holds for discrete, finite time series.

We now consider the time-local nature of the demodulates. Examination of equation (1.1)
shows that the frequency shift operation operates independently on each sample, and thus
introduces no leakage over time. As always, when we filter the data (equation (1.2)) some
leakage over time is introduced, but if we choose a normal filter function, then the power
remains strongly centred at the correct time. We know (above) that "perfect" demodulates
are independent. Thus, by a correct choice of our frequency band and time window
(sampling rate) we ensure that there are two degrees of freedom associated with each
demodulate point. Therefore we can obtain a series of time-local and independent
estimates of k and r by using each pair of points in our two time series, but we have no
information about whether these time-local estimates of k and r are constant over
frequency. This is a consequence of the finite information content of a band-limited
signal and is always true. Thus, a complex demodulate decomposition of two time series
and the calculation of the transfer function between pairs of points in them is always a
valid operation in terms of the information content of the data. This does not mean that
the system described by the relationship between x(t) and y(t) has a frequency
independent time-local transfer function, but that we have no information with which to
test this hypothesis. We can test it only if we make some further (or different)
assumption, for example that the amplitude and phase relationships should be stable over

a slightly longer time window, and average over time. In the application we present here



this means that in practice we need to use a frequency band that is sufficiently wide that
we obtain several demodulate samples in a time window corresponding to the expected
duration of a 'phase’. We generally need to work with very few points (5 to 15 points is
typical). This is usually sufficient to give stable resuits, and ensures that the calculation of

the covariance matrix is a very efficient operation.
2. COMPLEX DEMODULATE REGRESSION

First, consider a finite realization of a continuous parameter, real, zero mean multiple
stationary Gaussian series x(1)' = [x,(1), x,(1),... %01, t=0,1,...,T (' denotes transpose).
Let X(tw,)' = [X; (tw).X, (t,w),... X, (bwy)] . t=1,2,..,M denote the corresponding
complex demodulates computed by the above method, i.e Fourier transformed, band-pass
filtered from w,-6w to w,+dw, frequency shifted by w,, truncated, and transformed back
to the time domain. It then follows from Goodman (1963) that the complex demodulates
will be independently Gaussian distributed and that M times the (Hermitian) covariance

matrix
M
S(wo) = (1/M) 2 X(tw,) X(tw,)*  (* denotes complex conjugate transpose)
I

is distributed as a complex Wishart provided the spectral density matrix of the original
continuous series is constant over the band w, + 6w, and that the filter is sufficiently
sharp. For more about the complex Gaussian and related distributions, see Goodman
(1963).

The estimation of model parameters based on complex valued variables are very similar
to that for real variables. To illustrate this we take the ordinary regression model with one

dependent and L explanatory variables:

L
Y(tw) =2 viw) X(tw) +Altw) t=1,...M
1



Y(1,0,) [ X 0) oo g (L)
st Yay=| = Xay=| - =
[ YM,0,) X, (M), Xy (M)
A(Lw,) ) Y1(@,)
aey= | o daje | ,
AM.,) ] 7. (@)

and write the model,
Y(w,) = X(w,) v(w,) + Alaw,)

using least squares i.e. minimizing A(w,)* A(w,) we get the least squares estimator

Ywy) = [X(wy)* X(wy) I X(wy)* Y(w,) .

Under regularity conditions, for example non-stochastic X and flat spectrum for the

residuals A in the band w + 6w, the following properties of the least squares estimator

can easily be derived:

A
1) E{y(w,}} = y(w,),
2)  E{[(w,) - v)] [1(wy) - v(@)]¥} = 02 [X(wy)* X(w)]" (2.1

3) E{lY(w)- Xlwp (@] * [Y(e,) - X(@)¥(@ /(ML)

=E{A(u) Alw,)) = 02, 2.2)

4 Cl= vy K(w) X(w)y(w,) / [Y(w) Y (w,)]

is the squared coherency,

S T féz) ML) ZII:L) is distributed as F(2L,2(M-L)) if y(w,) =0,



6)

7

8)

Approximate (1-o) confidence band for the gain | v;(w,) | : Letting o, denote the

square root of the i:th diagonal element of (2.1)

| V@) | £ (0 AZ)\E D), 2.3)

For the phase @; = arctan[Im(y,(w,) J/Re( v,(w,)] estimated with

&, = arctan(Im (3 (wg) JRe(y,(w))]

we get the approximate confidence bands

&+ aresin{ (0, /(| 3(wy) [V INEL2) } , and (2.4)

For a bivariate system the above phase estimator is consistent even in the presence
of measurement errors in the explanatory variable, provided these errors are
uncorrelated with the errors in the y variable. However, as in the real time
domain, the gain estimator (i.e. the magnitude of the elements of %‘, ) is

inconsistent if there are measurement errors in the explanatory variable.

Comments:

If the residual variance is unknown and is estimated using equation.2.2, then
F(2,2(M-L))/(M-L) should be used instead of X2 in formulae (2.3) and (2.4). Using
the inverse FFT (after filtering in the frequency domain) to compute the complex
demodulates one generally has to add zeros to the beginning and end of the
frequency band to make the number of frequency points a power of 2. This in turn
implies that we get too many data points in the complex demodulate time domain,
Le. the data points are not independent and the degrees of freedom in the above
formulae have to be reduced. For example, if our frequency band originally has 150
frequency points, zero padding to 256 gives a 'redundancy' factor of 150/256 = .59 .
So if the number of complex demodulates is M and the ‘redundancy factor' is
r(.5<r<1) we have to use Mr instead of M in the above formulae. Of course,
using the inverse direct Fourier transform instead of the FFT involves no zero
padding, i.e. the 'redundancy’ factor is 1 in that case.

As can be seen from the above, the properties of the least squares estimator in the

complex demodulate time domain are very similar to those pertaining to the real time



domain. The main difference is that the number of degrees of freedom has to be
calculated somewhat differently because we have two instead of one degree for each
independent observation. We can thus easily obtain a Two Stage Least Squares Estimator
for complex demodulated time series. Alternatively we may consider the Maximum
Likelihood estimator. This was used by Roberts and Christoffersson (1990) for estimating
particle motion models for seismic signals. Bohme (1986) derived a maximum likelihood
estimator for sonar applications using a more conventional spectral density estimator. The
models used by these authors are basically complex valued factor analysis models, i.e. the

factors and factor-loadings are complex quantities.

3. DATA SERIES USED IN THE STUDY

The data series used are the logarithm of the total manufacturing production
index (LOGMPI) and the Business Tendency Survey (BTS) series. We refer to
Bergstrdm (1991) and Knudsen & Norlin (1990) for a more detailed description of the

series.

The dependent series in this study, the manufacturing production index, consists of
quarterty index figures computed by averaging monthly figures. The seasonal variability
dominates the time series, making it difficult to see other fluctuations. When looking at
the series in the frequency domain, the amplitude spectrum of the detrended series
(Figure 1) shows huge peaks at frequencies 1 and 2 cycles per year (c/y). These are
caused by the seasonal cycle and its harmonics (e.g. half year). But we can also see
energy at lower frequencies, say below .5 c/y. Between this and the seasonal effects there
is hardly any energy at all. This observation, together with a more detailed analysis of the
coherence between the various series as a function of frequency, leads us to concentrate
on low frequencies. These frequencies are also relatively unaffected by possible aliasing

caused by the averaging and resampling procedure from monthly to quarterly figures.
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The kind of series considered here are sometimes disturbed by conflicts on the labour
market or other events that might influence the production volume temporarily. The
observation period for this series is from 1968 until 1990. During this period there were
tWo major labour market conflicts, in 1980:2 and in 1988:1. When working in the time
domain these disturbances are usually handled by including dummy variables in the
model. Since frequency domain methods are relatively insensitive to such time local

effects, especially at lower frequencies, usually no special actions are necessary.

The Business Tendency Survey is a quarterly survey distributed to almost 2000
companies and consists of six groups of variables (see Knudsen and Norlin 1990).

We will here concentrate the analysis on group 1, reflecting judgements on the economic
situation in the current quarter (BTS variables B101 - B108, which we call collectively
the "B100" series) and group 3, concerning forecasts for the next quarter (BTS variables
B301 - B308, the "B300" series). These two groups of variables measure the same type of
variables. The first is a comparison of the present quarter to the previous whereas the
third is a forecast made in the previous quarter. The variables should represent first
differences, but as will be shown in the next section, it is more likely that the BTS series
represent annual change. We must bear this in mind when interpreting the results of the

analysis, whether we work in the time or the frequency domain (see below).

The respondents are asked to ignore seasonal effects when answering questions
considering quarterly changes. The amplitude spectra reveal that they do this with
variable success. For the B100 series there are hardly any noticeable seasonal components
in the amplitude spectra except for the variables B103 and B104 that measure domestic
and export prices. For the B300 series on the other hand there are quite large seasonal
components except for variables B302 and B307 (production capacity and purchases of

raw material). As an example, in Figure 2 we show the amplitude spectrum of the BTS

11



series B101, volume of production, which was considered the variable of main interest

from the BTS.

4. RELATION BETWEEN THE MANUFACTURING PRODUCTION INDEX
AND THE BUSINESS TENDENCY SURVEY SERIES.

4.1 EXPLORATORY SPECTRAL ANALYSIS

In order to get an overall picture of the relation between the production index and the

BTS series we consider first the amplitude spectra.

These BTS series represent first differences whereas the production index is a volume
series. Differencing a series implies that we give more weight to the higher frequencies
and also introduce a linear phase shift starting with 90 degrees at zero frequency and
going down to zero at the Nyquist2. This does not affect the way in which we conduct the
frequency domain analysis procedure, but the estimated magnitude and phase of the
transfer function must be interpreted differently. The phase of the transfer function
between a volume series and a differenced explanatory series will, at for example .3 cfy,
have a downward phase shift of 77 degrees (13 months lead for the differenced series)
compared to the phase between the corresponding undifferenced series (or the phase if
both series are differenced). Similarly, for a fourth differenced series the corresponding
phase shift will be 36 degrees (6 months lead). This effect is clearly seen by looking at
the curves at the top of Figure 3 showing the logarithm of the manufacturing production
index (LOGMPI), the first difference (DLOGMPI) and the fourth difference
(D4LOGMPI). The first and fourth differences have been multiplied with 100 to

2 Throughout this paper we represent the lag between series primarily in terms of phase lag in degrees. If
we believe that the phase lag is indicative of a simple time lag, then this time lag At can be estimated via
At = Ap/(360*f), where Ap is the phase lag and f is the central frequency of the band. We prefer the
representation in terms of phase lag because an extra assumption is implicit in the conversion to a time
lag.
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represent percentage change. The smooth dotted curve below each index series is the
corresponding series band-pass (zero phase) filtered from .15 cly to .45 cly, i.e. business
cycles from 2.2 to 6.7 years. Each of the spectra is individually scaled to maximum
amplitude so the spectrum gives for each series the relative distribution of amplitude as a

function of frequency. The curves on top of the figures are also scaled individually.

In the time domain the same problem takes a different, and slightly less tractable, form. If
Wwe expect a direct relationship between two variables a(t) and b(t) it is not advisable to
estimate the relationship between a(t) and for example the differenced b(t) series. If we
do not compare "like" with "like", we can still with full validity use a time domain lag
model, but in general more lag coefficients will be significant. Obviously, there is a
danger that this can adversely affect any inferences about underlying economic

mechanisms eventually drawn from the analysis.

Comparing the amplitude spectrum of B101 (Figure 2) with the spectra in Figure 3 we
find that the spectra of B101 and DALOGMPI are remarkably similar. Figure 4 shows the
two spectra in the same plot and we see that the Spectra are virtually identical for
frequencies up to about .6 ¢/y and that the same is true for the business cycle component
(the two smooth dotted curves on top of the figure). This is a strong indication that the
BTS series B101 does not measure production of the present quarter compared to that of
the previous but instead measures annual change.
@

We now examine cross spectra between series. These give gain and phase of the transfer
function averaged over the whole time window. Later, we also analyse the data using
complex demodulation, which allows us to examine possible variation with time of the

relationships between the variables.

Figures 5A-F show the phase and gain of the transfer function between the BTS series

B101 and the three transformed manufacturing production index series, i.e. LOGMP],
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DLOGMPI and D4LOGMPI. All the cross spectra between the production index and the
different BTS series show high coherency in the band 0.15 - 0.45 c/y corresponding to
(business) cycles from 2.2 to 6.7 years, and we will later concentrate our analysis on this
frequency band. This main finding is valid whether we use the logarithm of the
production index or not, first or fourth order differenced series. There is, however, one
notable dissimilarity between the phase spectra for the fourth difference on the one hand
and that of the original or first differenced series, in that (in contrast to for DALOGMPI)
for LOGMPI and DLOGMPI we have significant coherency at the fundamental seasonal
frequency (1 c/y) showing that there is a significant seasonal component in the B101
series. The phase lag for the LOGMPI series is around 180 degrees implying that the
respondents in the Business Tendency Survey over-compensate the seasonal effects when
performing the seasonal adjustment relative the present quarter. For the differenced series
the corresponding phase lag is around 135 degrees which is just what could be expected
from the phase lag of the difference filter. There is also significant coherency at the
fundamental seasonal frequency for most of the other B100 and B300 series, exceptions
are B102 and B107. The power at seasonal frequencies can vary greatly from series to
series.

For the phase spectrum of D4LOGMPI versus B101 there is of course no significant
coherency at 1 c/y because the fourth difference filter removes the seasonal component.
However we see significant cohérency on both sides close to 1 c/y. This is most probably
caused by leakage from the seasonal because the fourth difference filter does not remove
seasonal effects in the neighbourhood of 1 cfy, i.e. it is not an optimal filter for removing
seasonal components. For some of the series there is also some slight coherency in other
frequency bands but there is not enough information in the data to resolve it properly.
These cross-spectra were used primarily as an initial investigating tool. Before trying to
draw any real conclusions from the data, we use complex demodulation to investigate the

stability over time of the relationships between the data series.
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4.2 TIME AND FREQUENCY LOCAL ANALYSIS

4.2.1 MODELS WITH ONE B100 EXPLANATORY VARIABLE

First we consider the questions concerning annual changes, i.e. the dependent variable is
DALOGMPL. Figures 6A and 6B provide examples of complex demodulate transfer
function analysis in the frequency band 0.15 to 0.45 c/y. Five points are used in the
regression over time, giving a sliding time window of 10 years. As the time series are
21 3/4 years long, this allows us to examine the time-stability of the relationships
between the series. The figures presented, which are fairly typical, show that both the
amplitude and phase of the transfer function are stable over time (within this frequency
band). For some of the variables the estimated transfer function varies more with time,
but these variations are associated with a decrease in coherence, meaning that the
variations are not (statistically) significant. Having ascertained this, to get a "best"
estimate of the transfer function, we can average over the whole available time series.

Table 1 summarizes the gain and phase relationships and coherency between the
manufacturing production index and each of the BTS series 101 to 108, within the

frequency band .15 t0 .45 cy.

The variable B101, which describes changes in production volume from the previous
quarter to the current quarter, has a phase lag relative to the D4LOGMPI series of
approximately -14 degrees in the frequency interval considered (Figure 5A). If we
believe that the phase lag is indicative of a simple time lag between the series, then this
time lag is about seven weeks (i.e. half a quarter), with the B101 series leading. This lead
is significantly different from zero. The gain (regression coefficient) is around 0.28 and

coherence is .96.
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Table 1: Models for DALOGMPI with One Explanatory Variable
from Group 1.

Frequency Band .15 - .45 cfy.

95% confidence limits

Series  Gain Phase herenc

Volume of production B101 0.28 +.04 -14 +07 .96
Production capacity B102 0.85 +.28 11+18 .83

Prices (domestic) B103 0.35+.15 5+23 75
Prices (export) B104 0.20 + .07 -13+ 18 .82
Orders received B105 0.26 + .05 27+12 .92
(domestic market)

Orders received B106 0.19 + .05 -49 + 16 .87
(export market)

Purchases of raw B107 0.20 +.05 9+12 91
materials

Time of deliveries B108 0.26 + .09 -23+20 .81

In Table 1, we can examine the resuits for the analysis of the D4LOGMPI series vs. each
of the series B101 to B108 in the frequency band 0.15 to 0.45 c¢/y. It can be seen that
there is a high degree of internal consistency in the resuits. All of the survey series show
a clearly significant relationship with the production series. The number of independent
data used in the estimation is about twenty and the number of parameters in the model
that we are fitting to the data is two. Thus all of the estimated coherencies are very high.
Four of the series; B101, B105, B106 and B108 (marginally), show significant negative
phase lags implying a lead of the corresponding BTS series over D4LOGMPL The
largest lead is for B106 (orders received for the export market) with a lead of almost half
a year. For the rest of the B100 series the phase lag is not significantly different from

zero, i.e. we cannot detect any significant lead or lag.

As the phase lag between the first and fourth difference filter is 40 degrees at .3 c/y we

3 see footnote 2
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expect that the phase between DLOGMPI and the various B100 will be about 40 degrees
larger than that of D4ALOGMPI and the corresponding B100 series. This is indeed the

case as can be seen from Table 2.

Table 2: Models for DLOGMPI with One Explanatory Variable
from Group 1.

Frequency Band .15 - .45 cly.

95% confidence limits

Series  Gain Phase Coherence
lag(c)4

Volume of production B101 0.07 +.02 24+13 91
Production capacity B102 0.22+.09 48+23 .76

Prices (domestic) B103 0.10 + .04 53+24 .75
Prices (export) B104 0.05 +.02 31+26 72
Orders received B105 0.06 +.02 15+17 .85
(domestic market)

Orders received B106 0.05 +.02 -8+20 .80
(export market)

Purchases of raw B107 0.05 + .02 32+16 .86
materials

Time of deliveries B108 0.06 + .03 19 +25 72

Comparing tables | and 2, the largest deviation from the expected phase shift of 40
degrees is for B103 where the phase lag is 53 degrees instead of the expected 45 (5 + 40)
but the difference is well within the confidence bands. We also note that the coherencies
are lower than those for DALOGMPI. This is also what can be expected as the difference
filter is quite effective in removing lower frequencies, which in our case happens to be

the frequency band of interest.

All of the variables except B106 show positive phase lags relative to DLOGMPI, and

with the exceptions of series B105 and B10§ all of these lags are significantly different

4see footnote 2
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from zero. For series B101, B104 and B107 the estimated lag, when naively converted to
a time lag, is close to one quarter. If the B100 series measured the difference between the
present quarter and the previous quarter (monthly change) we would expect the phase for
B101 to be around zero or slightly negative because the measurement is made in the later
part of the quarter. Furthermore, we would expect the phase for B105 and B106 (orders
received for domestic and export market) to be negative, implying a lead over the
corresponding production variable, DLOGMPI. As this is not the case it is rather unlikely
that the B100 series refer to monthly changes. On the other hand the phase of B105 and
B106 relative to D4LOGMPI are both negative as expected and correspond to a lead of
about 3 months for B105 and 5-6 months for B106. The lead of B101 over DALOGMPI
is between 3 to 10 weeks (95% confidence interval) which is consistent with that the
survey is done in the later part of the quarter. These results, together with the earlier
discussed similarity of the amplitude spectra for D4LOGMPI and the B100 series, are

clear indications that the B100 series refer to annual change, not quarterly change.

Obviously, these results have important implications for the use of the BTS series in

making forecast of the business cycle.

4.2.2 COMPARISON WITH THE TIME DOMAIN RESULTS

It can be difficult to compare frequency-domain results with time-domain lag models of
the type used by e.g. Bergstrom (1991), primarily because the time domain models are
often much more complicated (more model parameters). However, we consider it
important to try to set our analysis into the context of more traditional time-domain
analyses. We therefore attempt to compare our results with the models estimated by

Bergstrom using B101, B102, ....., B108 as the only explanatory variable :

After elimination of the seasonal components in the DLOGMPI by using seasonal

dummies, Bergstrom found that e.g. B101 including lags up to four quarters could only
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explain about 22 percent of the remaining variability. Using current B101 and lagged
DLOGMPI gave a significantly better model fit. But, the fit is still rather poor, only
about 55 percent of the nonseasonal variation is explained. Our analysis indicates that this

is simply because the DLOGMPI leads B101.

‘The model finally chosen by Bergstrom was a comparison of each BTS variable with the
D4LOGMPI series at lags 0, 1, 2, 4 and 5. He obtained an R2 of between 0.69 and 0.83.
These values are lower than those obtained in our analysis (e.g. for the "best” variable
BIOI the values are 0.83 and 0.96 for time and complex demodulate domain
respectively). We believe that this is simply because there is little or no coherence outside
the frequency band that we have used (see Figures 5E and F), and including data from
these frequencies only degrades the model slightly. This appears to be a fairly important
conclusion. Two possibilities exist. Either the energy in the poorly correlated frequency
bands is simply noise, and there is no causal relationship between the variables at these
frequencies, or at these frequencies the causal relationship between the variables is non-
linear. The latter would imply that it is probably incorrect to analyse all frequency bands
together - a normal time-domain lag model is linear in the same sense as our complex

demodulate domain analysis, and thus will not work with a non-linear system.

4.2.3 THE FIRST AND THE THIRD GROUP OF THE BTS COMPARED

The variables B301 - B308 measure the same phenomena as the variables B101 - B108.
The difference is that while the first group is intended to compare the present situation to
the situation one quarter ago, the third group is the respondents' forecasts of changes from
the present situation one quarter ahead. This means the variables B301 - B308 are
forecasts of the variables B101 - B108 and if they are good forecasts they could be used

in forecasting models to obtain a greater lead time.
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We find that the B300 series are very similar to the corresponding B100 series, and they
all show high coherence with the D4LOGMPI series in the same frequency band (0.15 to
0.45 c/y). Results of the analysis of the relationship between the D4ALOGMPI series and
individual B300 series within this frequency band are given in Table 3. All the estimated
coherencies are high, but are slightly lower than for the analysis using the corresponding
B100 series (Table 1). As the B300 series are the respondents' forecasts of the B100

series this is what we might expect.

Table 3: Models for D4ALOGMPI with One Explanatory Variable
from Group 3.

Frequency Band .15 - .45 cfy.

95% confidence limits

Series Gain Phase Coherence
lag(?)

Volume of production B301 0.35 +.06 2+10 .94
Production capacity B302 0.76 + .30 34 +22 7

Prices (domestic) B303 0.42 + .26 15 +38 .56
Prices (export) B304 0.24 + .09 0+21 .79
Orders received B305 0.36 +.12 -18 +18 .83
(domestic market)

Orders received B306 0.28 +.13 -43 +£26 i)
(export market)

Purchases of raw B307 0.28 +.09 5+19 .82
materials

Time of deliveries B308 0.40 + .15 -17+21 .79

In our analysis the B300 data series have been "displaced" to match the B100 series, so
apart from errors due to incorrect forecasting we would expect to observe the same phase

lag for the B100 series as for the B300 series (the phase estimate is consistent in the

5see footnote 2
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presence of random noise - see Section 2). The coherencies are lower than for the B100
series and the confidence bands wider. The only series showing phase that is significantly
different from zero is B306 ( orders received, export market) which has a lead of the
same order as B106, Comparing the phase lag for the B100 and B300 series in Tables 2

and 3 one gets the impression that the phase is somewhat larger for the B300 series,

To clarify this point we looked at the relationship between each B100 series and the
corresponding B300 series within our selected frequency band (Table 4). We find a very
high coherence between the series, which allows a more thorough and definitive analysis
than does the comparison of tables 1 and 3. All of the comparisons show a phase lag, of 5
to 23 degrees. Only a couple of the phase lags are (almost) significantly different from
ten degrees, and one possibility would appear to be some kind of constant phase (time)
shift for all the series. The very high coherence between the series allows us to verify this

by examination of cross-spectra (Figures 7 and §).

In Figure 7, at low frequencies we observe an almost linear drift in phase from zero at
zero frequency up to about 25 degrees at a frequency of 0.5 c/y. Above this frequency
there is insignificant coherence between the B101 and B301 series except at seasonal
frequencies. A linear drift in phase lag with frequency is what we expect for a constant
time lag of 1.7 months between the two series. That no significant phase shift is observed
at seasonal frequencies implies that the respondents have in some way implicity
“thought” differently about seasonal and other components. By superimposing the B101
on B301 this time shift can be directly observed. In Figure 8 cross spectral phases for the
B108 and B308 series are shown.

Again we see a possibly linear drift in phase with frequency from zero up to about Ic/y.
Above this frequency the coherence gradually decreases. There is some coherence around
1 c/y, and in contrast to Figure 7 the observed phase shift is consistent with a simple time

shift even at these frequencies. However, the slope of the "best" line is different in
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Figures 7 and 8, implying that (significantly) different time shifts are appropriate. Within
the estimated confidence limits, the cross spectra are consistent with those produced using

complex demodulation and presented in Table 4.

Table 4: Models for the BTS Series 100 with the Corresponding BTS -300
Variable as Explanatory Variable.

Frequency Band .15 - .45 cfy.

95% confidence limits.

Series Gain Phase Coherence
lag(°)s

Volume of production B101 vs B301 1.21 + .14 15+ 06 .97
Production capacity B102 vs B302 092 +.17 23+10 .94
Prices (domestic) B103 vs B303 1.31 + .24 13+10 .62
Prices (export) B104 vs B304 1.15 +.17 13 +09 .95
Orders received B105 vs B305 1.43 + .22 9+08 .95
(domestic market)
Orders received B106 vs B306 1.49 + .38 -5+ 15 .89
(export market)
Purchases of raw B107 vs B307 1.40 +.19 14 + 09 .96
materials

Time of deliveries B108 vs B308 1.57 £.21 8§ +07 .97

The conclusion is that there is a clear and significant delay between the B100 series and
the corresponding B300 series. This time delay varies from O to about 3 months (0 - 23
degrees) for the different series (see Table 4) with the B100 series leading (but recall that
the B300 series are known one quarter earlier). This is not due to any kind of "random"
error in the data, and implies a systematic difference in the two series. This difference
must be due either to the way in which the data is generated, or to some idiosyncrasy in

the way in which the respondents answer the questions.

Ssee footnote 2

22



Because of the very high coherence between the B100 and B300 series in the relevant

frequency band, we can be fairly confident about the reliability of this result.

A comparison of our resuits with those from a time domain analysis is illuminating, and
provides a nice example of why we should routinely consider frequency-domain analyses

as a complement to anaiysis in the time domain:

Bergstrom (1991) explained B301 with B101 at lags 0 to 4 and seasonal dummies. He
obtained an R2 of 0.89 with lags zero, one and two significant. This is a good deal lower
than our estimate of 0.97 (Table 4), a consequence of the lack of coherency at higher
frequencies. Bergstrém observed that several lags were required to describe the
relationship, the "mean delay" being 0.98 quarters. According to our analysis, a single
delay of 1.6 months is sufficient to describe essentially the whole relationship between
the data series, with a minor zero-lag component at seasonal frequencies. While these
results appear to be inconsistent, we believe that this is simply due to the difficulty of
interpreting the time domain results when the correct lag does not correspond to a
multiple of the sampling interval, and the relationships between the series are frequency

dependent.

4.2.4 MODELS WITH TWO EXPLANATORY VARIABLES (B101 and another

one)
We tried every other variable from the first group (B102 - B108) in a multiple model, one

at a time, together with B101 in the frequency band 0.15 to 0.45 ¢/y. None of the multiple

models were successful. In most cases the gain was significant for both B101 and the
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added variable, but the phase was insignificant for the added variable in most cases, while

the phase for B101 was significant.

That such multiple models do not work is simply a reflection of the high degree of
similarity between the B101 variable and the other B100 variables (within the relevant

frequency band).

5. SUMMARY

Frequency and complex demodulate methods were used to illuminate the relationship
between manufacturing and the various BTS-series. The BTS series are intended to
measure quarterly change but our analysis shows that it is more likely that they measure
annual change. In addition they do contain significant seasonal components. We found
that all the (B100 and B300) BTS series used had high coherence with the series of
manufacturing production for frequencies between 0.15 and 0.45 ¢/y corresponding to the
frequency band most likely to be dominated by the business cycle. The phase lag between
the percentage annual change in manufacturing production was found to be negative
indicating a lead for the BTS series B101, B105 and B106.

At other frequencies we found little coherence (other than that due to imperfectly
removed seasonal effects - see below). This has important implications for the type of
causal model which it is sensible to use for this type of data. For example, at higher
frequencies either the data is dominated by "noise" or there is a non-linear relationship
between the variables. Either way, it is not optimal to combine analysis of this data with
that at lower frequencies. Furthermore, as high frequency ("rapid”, "short term")
variations seem to be uncorrelated, it seems that the data series are unsuitable for the
prediction of rapid variations, only the more slowly varying (lower frequency) part can

be predicted with a reasonable degree of success.
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When working with traditional econometric methodology the series used must be
comparable, so the dependent series should be transformed into a series describing
production changes, since this is what the BTS series measures. Frequency and complex
demodulate domain methods have a distinct advantage here in that compensation for such
effects can be included after the actual numerical analysis, whereas in the time domain
the entire analysis procedure must be repeated after suitable "adjustment” of the data

series.

Comparison of the B300 series with MPT and with the corresponding B100 series showed
a consistent and clear time delay between the B100 and B300 series. This time delay can

be different for the different series.

All the B100 series had high coherence with the series of manufacturing production, but
the cross-correlation between the BTS series is high, so we never can have significant

parameter estimates for models with more than one explanatory variable from the BTS.

The purpose of this paper has been to study the structural relationship between
manufacturing production and the various BTS series which could serve as a basis for
making forecasts of the business cycle.

The results indicate that a simple recursive filter (exponential smoothing) applied to B101
or perhaps even better to B301 which is known a quarter earlier would probably give

reasonable forecasts of the business cycle (see Oller 1986).
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SVENSK SAMMANFATTNING.

Syftet med denna rapport ar att belysa sambandet mellan industriproduktionsindex och ett

antal barometerserier for att i ett senare steg utveckla metodik for konjunkturprognoser.

Analys av ekonomiska tidsserier utf6rs oftast i tidsdominen. Vi har hir valt att i stillet
arbeta i frekventiell och komplexdemodulerad domin. Eftersom det rader ett entydigt
samband mellan tids- och frekvensdomin innehiller de samma information fast i olika
form. Vissa strukturer framtrider tydligare i frekvensdominen, andra i tidsdoménen.
Komplexdemodulerad tidsdomén 4r en hybrid mellan de tva andra och dr sirskilt limpad

for analys av forlopp dar strukturen varierar éver tid.

De dataserier som analyserats dr produktionsindex for verkstadsproduktion (aggregerad
till kvartalsnivd) och barometerserierna B101 - B108 och B301 - B308. De forsta serierna
(B100) avser att mita sdsongrensad fGréindring innevarande kvartal jamfort med
foregiende, medan B300 serierna avser en prognos av kommande kvartal jimfort med
innevarande. Vira resultat visar att denna sisongrensning har varierande kvalitet samt att
barometerserierna miter forindring pi Ars- snarare 4n kvartalsbasis. Vissa serier har
kraftiga sisongkomponenter medan det for andra skett en dverkompensering av sdsong-
effekterna. Figur 4 visar amplitudspektrum fir produktionsindex (procentuell forindring
pa Aarsbasis), DALOGMPI och barometerserie B101 vilken miter total produktion. De
tunna prickade kurvorna dverst pd figuren visar konjunkturcykelkomponenten for de tva
serierna. Av figuren ser vi att spektra dr praktiskt taget identiska fiir frekvenser upp till
ca 0,5 cykler/dr. Vi ser ocksd att tidsférskjutningen mellan dataserierna #r liten, ndgot
mindre &n ett halvt kvartal. Denna tidsforskjutning beror troligen av att barometerserierna
miits under senare delen av kvartalet. Huruvida barometerserien miéter kvartals- eller

drsvisa forindringar dr av stor betydelse nir den anvinds for att forutse vindpunkter i
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konjunkturen eftersom tidsforskjutningen mellan konjunktur och kvartalvis forandring 4r

storre dn mellan konjunktureil och &rsvis forindring.

En sammanfattning av resultaten betréffande reiationen mellan drlig forindring av
produktionsindex och de olika barometerserierna presenteras i tabell 1 och 3. Vid
konjunkturcykelfrekvenser visar samtliga barometerserier mycket hog korrelation med
produktionsindex. Storst tidsforskjutning visar B106 och B306 vilka miter orderingang
pd exportmarknaden. Dessa barometerserier ligger som forvintat ca ett halvt ir fore

produktionsférindringen pa Arsbasis.

Analysen visar vidare att praktiskt taget all samvariation (frutom sdsong) mellan
produktionsindex och barometerserierna hinfér sig till konjunkturcyklerna, dvs. cykler
med en lingd mellan 2 och 7 4r, samt att denna samvariation ir mycket hog (se
figurerna 5A-F). Detta innebir att ett enkelt rekursivt filter (exponentiell utjimning) av
B101, eller kanske hellre B301 vilken #r kind ett kvartal tidigare, formodligen skulle ge

en acceptabel konjunkturprognos.
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Figure 1. Amplitude spectrum of the logarithm of the
manufacturing production index (LOGMPI).
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Figure 2. Amplitude spectrum of BTS series B101.



OG- E>

Figure 3. Amplitude spectrum of

(1) the logarithm of the manufacturing production

index (LOGMPI)

(2) the first difference (DLOGMPI)

(3) the 4th difference (D4LOGMPT).

The smooth dotted curve below each index series is the
corresponding series band-pass (zero phase) filtered from .15 cly
to .45 cfy.
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Figure 4. Amplitude spectrum of the logarithm of the 4th
difference of the manufacturing production index (D4LOGMPI)
and the BTS series B101. The smooth dotted curve below each
index series is the corresponding series band-pass (zero phase)
filtered from .15 c/y to .45 cfy.



Figure SA. Phase of the transfer function between the BTS series

B101 and the logarithm of the manufacturing production
index (LOGMPY).
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Figure 5B. Gain of the transfer function between the BTS series
B101 and the logarithm of the manufacturing production
index (LOGMPT).
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Figure 5C. Phase of the transfer function between the BTS series
B101 and the first difference of the logarithm of the

manufacturing production index (DLOGMPI).



DLOGHM
LIt

I T e D R T TR TP r—
& ’ S W 1X ngrtes
"
ns s

Figure 5D. Gain of the transfer function between the BTS series
B101 and the first difference of the logarithm of the
manufacturing production index (DLOGMPI).
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Figure SE. Phase of the transfer function between the BTS series
B101 and the 4th difference of the logarithm of the
manufacturing production index (D4LOGMPI).
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Figure 5F. Gain of the transfer function between the BTS series
B101 and the 4th difference of the logarithm of the
manufacturing production index (D4LOGMPI).
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Figure 6A. Phase of the complex demodulate transfer function
between the BTS series B101 and the 4th difference of the
logarithm of the manufacturing production index (DALOGMPI).
Frequency band .15 c/y - .45 cly.
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Figure 6B. Gain of the complex demodulate transfer function
between the BTS series B101 and the 4th difference of the
logarithm of the manufacturing production index (D4LOGMPI).
Frequency band .15 cfy - .45 cfy.
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Figure 7. Phase of the transfer function between the BTS series
B301 and B101.



Figure 8. Phase of the transfer function between the BTS series
B308 and B108.
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