
WORKING PAPER NO 154, FEBRUARY 2021 

PUBLISHED BY THE NATIONAL INSTITUTE OF ECONOMIC RESEARCH (NIER) 

ISSN 1100-7818 

 

 

Nowcasting Swedish GDP Growth* 

Sebastian Ankargren† and Unn Lindholm‡ 

February, 2021 

 

 

 

 

* We thank Erika Färnstrand Damsgaard and seminar participants at the National Institute of 

Economic Research for comments that helped improve the paper. The opinions expressed in 

this article are the sole responsibility of the author and do not necessarily reflect the views of 

the National Institute of Economic Research. 

† National Institute of Economic Research, Fleminggatan 7, Box 12090, 102 23 Stockholm, 

Sweden. E-mail: sebastian.ankargren@konj.se Phone: +46 453 59 55. 

‡ National Institute of Economic Research, Fleminggatan 7, Box 12090, 102 23 Stockholm, 

Sweden. E-mail: unn.lindholm@konj.se Phone: +46 453 59 23. 

mailto:sebastian.ankargren@konj.se
mailto:unn.lindholm@konj.se


 

 

 

 

NIER prepares analyses and forecasts of the Swedish and international 
economy and conducts related research. NIER is accountable to the 
Ministry of Finance, and like other government agencies, has an inde-
pendent status and is responsible for the assessments that it publishes.  

The Working Paper series consists of publications of research reports 
and other detailed analyses. The reports may concern macroeconomic is-
sues related to the forecasts of the institute, research in environmental 
economics, or problems of economic and statistical methods.  

All publications can be downloaded from the NIER website.   

http://www.konj.se/en


Abstract 

We nowcast Swedish GDP growth using several types of popular short-
term forecasting models. Our results indicate that medium-sized MIDAS 
regressions and small-scale bridge equation models provided the most 
accurate nowcasts in 2010Q1-2019Q4. Among dynamic factor models, 
we find a larger set of variables to be more appropriate, but the nowcasts 
made by our large dynamic factor model have historically been inferior 
to those made by the bridge equation and MIDAS regression models. 
Nevertheless, equal-weighted pooling of forecasts is superior to any sin-
gle method. In a closer examination of nowcasting during the Covid-19 
pandemic, we find that the dynamic factor model reacted much more 
forcefully during 2020Q2 and 2020Q3, with nowcasts that to a large de-
gree developed like professional forecasts. Our results reveal a clear di-
vide between, on the one hand, historical forecasting performance in the 
period between the Great Recession and the Covid-19 pandemic, and, 
on the other hand, usefulness during the pandemic. Decomposing the 
revisions of the dynamic factor model's nowcasts into contributions, we 
find that updated parameters caused large revisions. In comparison with 
a model that is not re-estimated during the pandemic, however, the re-
estimated model's nowcasts are more reasonable and accurate. Incorpo-
rating new data sources that measure economic activity at higher fre-
quency does not improve forecasting accuracy historically, but amplifies 
the downturn signal during the peak of the pandemic. 

 

JEL classification code: C11, C22, C32, C53, E17 

Keywords: Bayesian, dynamic factor model, bridge equation, mixed-fre-
quency, MIDAS, Covid-19 
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Sammanfattning 

Vi gör nulägesprognoser för svensk BNP-tillväxt med flera typer av po-
pulära kortfristiga prognosmodeller. Våra resultat tyder på att medelstora 
MIDAS-regressioner och småskaliga överbryggnadsekvationer gav de 
mest exakta nulägesprognoserna under 2010kv1-2019kv4. Bland dyna-
miska faktormodeller finner vi att en större uppsättning variabler är mer 
lämpligt, men de nulägesprognoser som gjorts av vår stora dynamiska 
faktormodell har historiskt sett varit sämre än de som gjordes av över-
bryggnadsekvationer och MIDAS-regressionsmodellerna. Icke desto 
mindre är en lika viktad sammanslagning av prognoser överlägsen en en-
skild metod. I en närmare granskning av nulägesprognoser under covid-
19-pandemin finner vi att den dynamiska faktormodellen reagerade 
mycket kraftigare under 2020kv2 och 2020kv3, med nulägesprognoser 
som till stor del utvecklats som prognoser gjorda av professionella pro-
gnosmakare. Våra resultat visar en tydlig skillnad mellan å ena sidan hi-
storisk prognosutveckling under perioden mellan finanskrisen och covid-
19-pandemin och å andra sidan användbarheten under pandemin. Ge-
nom att dekomponera revideringarna av den dynamiska faktormodellens 
nulägesprognos till bidrag finner vi att uppdaterade parametrar orsakade 
stora förändringar i prognoserna. Jämfört med en modell som inte skatt-
tas om under pandemin är dock den omskattade modellens nulägespro-
gnoser mer rimliga och korrekta. Att införliva nya datakällor som mäter 
ekonomisk aktivitet på högre frekvens förbättrar inte prognosförmågan 
historiskt, men förstärker nedgången under pandemins topp. 
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1 Introduction

An accurate assessment of the current situation is crucial for predicting the future. Fore-
casting the present is commonly referred to as nowcasting, and is particularly common for
gauging economic output as measured by the gross domestic product (GDP). Many profes-
sional forecasters, both public and private, engage in nowcasting with well-known examples
including the Federal Reserve Banks of New York (Bok et al., 2017) and Atlanta (Higgins,
2014), the European Central Bank (Bańbura and Saiz, 2020), and the OECD (Ollivaud et al.,
2016). For a detailed discussion of the challenges involved in nowcasting, see Bańbura et al.
(2013).

The real-time macroeconomic data flow is characterized by a staggered nature that yields
so-called ragged edges—that is, unbalanced data, in particular at the end of the sample. Sur-
vey data is typically faster than other types of data, and published at the end of the reference
month. Other important economic data, such as inflation and unemployment, are often made
available around two to three weeks following the end of the reference month. Some data
that are crucial for judging the state of the economy, like industrial production, retail sales,
and household consumption, can often be associated with even greater publication lags of
four to five weeks or more. The differences in publication structure means that models that
include more data than only a handful of indicators can oftentimes be updated several times
a week to account for new releases. Developing models that can efficiently incorporate the
continuous flow of new data to improve the short-term forecasts is the core challenge that
nowcasting tackles.

We study the Swedish economy and nowcasts of quarterly GDP growth in this work. Our
contribution extends beyond the development of a suite of forecasting models for Sweden
as we investigate the role of several key aspects when conducting model-based nowcasting.
We compare the forecasting ability of three popular classes of nowcasting models: dynamic
factor models, bridge equations, and MIDAS regressions. We further assess the role of model
size by estimating the models on small (6 variables), medium (13 variables) and large (34
variables) sets of data. Since Sweden is a small and open economy, we also investigate the
role of foreign variables in nowcasting domestic output growth. While our data comprises
conventional sources of soft and hard data, the Covid-19 pandemic emphasized an urgent
need for faster data, and ultimately led to several new indicators of economic activity being
developed. We evaluate the use of some of these data in predicting the pandemic-induced
downturn and subsequent recovery.

Our forecast evaluation shows that MIDAS regressions and bridge equation models
achieved lower root mean squared errors than the dynamic factor model. The results also
highlight one important aspect when comparing forecasting methodologies: the three meth-
ods we consider all favor different model sizes. The bridge equation model using our small
set of variables does better than using the medium or large sets of variables, whereas we
obtain the best performance among the MIDAS regressions when we use the medium-sized
set of variables. In contrast, the dynamic factor model shows more satisfactory performance
when employing the large set of variables.

To better understand how the results are affected by model specifications, we consider and
evaluate some alternatives. We mostly obtain marginal differences in predictive ability. The
dynamic factor model does not benefit from considering more or fewer international variables,
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nor does increases or decreases in the number of lags lead to more satisfactory forecasting
performances. The bridge equation model does not improve from modeling monthly variables
using a Bayesian VAR in lieu of independent AR(4) regressions, and neither bridge nor
MIDAS show any major improvements when dropping lagged GDP from the equations. In
our baseline specification, we use the unrestricted MIDAS approach suggested by Foroni
et al. (2015) with four lags, but changing to an exponential Almon specification with 12
lags leads to negligible differences that is both better and worse than baseline depending
on the horizon. Finally, we examine if more sophisticated forecast pooling methods can
improve upon the simple unweighted average. We obtain no better nowcasts using weights
that depend on historical accuracy.

We also investigate the performance of our suite of nowcasting models during the down-
turn and subsequent recovery in 2020Q2 and 2020Q3. We compute nowcasts every Friday
from the beginning of March and onwards, and compare if new indicators for real economic
activity in Sweden and the United States published at higher frequency made a difference
for the nowcasts. Our results show that inclusion of the Weekly Economic Index for the
US, released by the Federal Reserve Bank of New York, helped provide a stronger signal
of severe economic effects than what was found by the benchmark dynamic factor model.
Qualitatively, all versions of the dynamic factor model, with and without selected new indi-
cators, essentially convey the same story during 2020Q2. Nowcasts were successively revised
downwards in March and early April until reaching their minimum, and then being revised
upwards as more signals of optimism were identified in the data. To offer some context, we
contrast the model-based nowcasts with the professional forecasts published by the National
Institute of Economic Research (NIER), one of Sweden’s most prominent forecasting insti-
tutes. The evolution of the model-based nowcasts largely corresponds to that communicated
by the NIER, whose view of 2020Q2 was considerably more negative by the end of April than
in early April and June. For 2020Q3, the models’ nowcasts were close to the view held by the
National Institute of Economic Research in its August and September forecasts, and with
only minor differences between versions of the dynamic factor model. The bridge equation
and MIDAS regression models—showing the lowest RMSE in our forecast evaluation—both
suffer from sluggishness, and do not at all react in the same way to new data in 2020Q2 and
2020Q3.

Forecasting results in the literature vary substantially depending on the scope of the
forecasting exercise, particularly with respect to country and sample period. Andersson and
den Reijer (2015) develop a dynamic factor model and bridge equation models for nowcasting
Swedish GDP growth, and is thus closely related to our work. Similarly, den Reijer and
Johansson (2019) evaluate various specifications and find that averaging predictions from
MIDAS regressions with indicators included one at a time—the same approach we take—
performs particularly well. Our result that simple bridge equation models do better or
equally as well as larger and more complex dynamic factor models corroborates the results
presented by Ollivaud et al. (2016). They argue that simple bridge equation models are
often as good as large and more complex dynamic factor models, and demonstrate for six
advanced economies that dynamic factor models offer no gains in forecast accuracy for short-
term forecasts. We do, however, find a relatively more satisfactory performance by the more
complex dynamic factor model in 2020Q2 and 2020Q3. This result can be viewed in light of
work by, for example, Chauvet and Potter (2013), who show that improvements in accuracy
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achieved by more sophisticated models for the US are largely driven by crisis periods, and
that during non-crisis periods improvements are instead at best modest in comparison with
simple benchmarks. Siliverstovs (2020) obtain the same result for nowcasting models for the
US, and our results, clearly favoring the dynamic factor model during the pandemic-affected
second and third quarters of 2020 but simpler models otherwise, thus match previous findings
in the literature.

Our examination of nowcasts during the Covid-19 pandemic also add to a growing body
of literature on nowcasting during the pandemic; see, for example, Antoĺın-Dı́az et al. (2020);
Cimadomo et al. (2020); Foroni et al. (2020); Lenza and Primiceri (2020); Schorfheide and
Song (2020). Antoĺın-Dı́az et al. (2020) and Lenza and Primiceri (2020) both propose ways
of adapting model specifications to accommodate the large economic shocks caused by the
pandemic, Antoĺın-Dı́az et al. (2020) suggesting a dynamic factor model that allows for
outliers, and Lenza and Primiceri (2020) detailing how a Bayesian VAR can be estimated
when the timing of a sudden increase in shock variances and covariances is known. Sim-
ilarly, Schorfheide and Song (2020) show how a few months of pandemic-affected data in-
creases estimated shock variances and covariances, instead favoring estimating their model
on pre-pandemic data so that the distribution of shocks in the recovery period is the same
as in the pre-pandemic era. Besides showing how our models’ nowcasts developed during
the pandemic, we also decompose the revisions to the nowcasts and find occasional large
contributions from changes in parameters. Accounting for abnormal observations by either
employing an outlier-adjusted model specification as used by Antoĺın-Dı́az et al. (2020) or by
letting the shock covariance matrix increase at the beginning of the pandemic as suggested
by Lenza and Primiceri (2020) would effectively put less weight on data observed during the
pandemic, and would lead to smaller changes in estimated parameters. However, when we
compare nowcasts using a re-estimated model and a model estimated before the pandemic,
an approach strongly resembling that taken by Schorfheide and Song (2020), we find that the
re-estimated model yields much better and realistic nowcasts, in spite of some of its forecast
revisions largely being attributed to changes in parameters.

The remainder of the paper is structured as follows. Section 2 gives brief descriptions of
the forecasting methods that we use, Section 3 provides a description of the data, Section 4
presents the results of forecast evaluations, and Section 5 presents an analysis of nowcasts
during the Covid-19 pandemic. Section 6 concludes.

2 Methods

In this section, we provide brief descriptions of the methods that we use.

2.1 Dynamic Factor Model

The (dynamic) factor model is one of the more popular methods for nowcasting, originally
proposed by Geweke (1977). Further developments that have been crucial for its applicability
in nowcasting include Mariano and Murasawa (2003); Giannone et al. (2008); Bańbura and
Modugno (2014) with many additional studies providing empirical evidence of its usefulness.
A key feature is that the model can decompose its forecast revisions into one of three sources:

4



parameter revisions, historical data revisions, and new data releases. The decomposition
provides an opportunity to interpret changes to the model’s forecasts in a meaningful way,
and is useful for monitoring the economy in real time.

Basic specifications of the factor model let the variables load on the factors contempo-
raneously with idiosyncratic autocorrelation structures allowed by letting the error terms
follow simple autoregressive processes. Such simple specifications are often effective and do
well as evidenced by, for example, the factor model used by the Federal Reserve Bank of New
York (Bok et al., 2017). However, lead-lag relationships between variables themselves and
with the business cycle in general can be complex, with differences in the timing of down-
turns between, for instance, consumption, production and consumer confidence. To account
for heterogeneous lead-lag relationships, we follow the work by Luciani and Ricci (2014);
D’Agostino et al. (2016); Antoĺın-Dı́az et al. (2020) and let the lag structure be more flexible
than a contemporaneous impact of the factor on all variables. The model accommodates not
only immediate effects of the business cycle factor on the variables, but also delayed effects
through lags of the factor.

The model contains a single factor and is specified as

xi,t =
r∑

j=0

λi,jft−j +

p∑
k=1

φi,kxi,t−k + εi,t, εi,t ∼ iid N(0, σ2
i )

ft =

q∑
j=1

ϕjft−j + ut, ut ∼ iid N(0, 1).

(1)

Lead-lag relationships that are different across equations are permitted because of the in-
clusion of r lags of the factor. We let xi,t represent the underlying process that governs the
system, and yi,t be the data that is observed. Whenever a monthly variable is observed, then
yi,t = xi,t, but in cases where it is unobserved then yi,t = ∅. Similarly, quarterly GDP is
observed only four times a year. We follow Mariano and Murasawa (2003) and relate the
quarterly observations to the monthly underlying series through

yi,t =

{
1
3
(xi,t + 2xi,t−1 + 3xi,t−2 + 2xi,t−3 + xi,t−4), if yi,t is observed

∅, otherwise.

In our benchmark specification, we set r = 3 and p = q = 1 to permit for asynchronous
relationships between factors and variables, but still keep the specification parsimonious.
More details on the estimation of the model can be found in Appendix A.

2.2 Bridge Equations

Bridge equations have an extensive track record in nowcasting at major economic institutions,
having been used by, e.g., the ECB (ECB, 2008), Deutsche Bundesbank (Bundesbank, 2013),
the OECD (Ollivaud et al., 2016), and Sveriges Riksbank (Andersson and den Reijer, 2015).
The approach uses simple models to forecast high-frequency series in a first step, and then
aggregates the high-frequency series to the lower frequency at which the target variable is
observed. The final step predicts the target using the aggregated high-frequency series, which
now partially consist of observed data and forecasts, as predictors.
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Let yt be quarterly GDP growth, and assume that it is observed for t = 3, 6, 9, . . . , Ty.

Let xt be a monthly indicator observed for t = 1, 2, . . . , Tx, and let xQt represent the monthly
variable aggregated to the quarterly frequency. Depending on the nature of the variable,
xQt = 1

3
(xt + xt−1 + xt−2) or xQt = xt for t = 3, 6, . . . . The main forecasting equation in our

bridge equation model is an autoregressive distributed lag model of the form

yt = φ0 + φ1yt−3 + β1x
Q
t + β2x

Q
t−3 + εt. (2)

However, the caveat is that xQt must be observed to forecast yt. If xQt is unobserved, we first
employ an auxiliary AR(4) model that extends the monthly predictor into the future. That
is, we estimate

xt = ψ0 +
4∑

i=1

ψixt−i + νt, t = 1, 2, . . . , Tx,

and compute the forecast x̂t for t = Tx + 1, . . . , Ty + H, where H refers to the maximal
forecast horizon for GDP growth. We then proceed and compute the quarterly aggregates
xQt using forecasts x̂t when necessary, whereby (2) is feasible to use for recursively forecasting
yTy+h for h = 3, 6, . . . , H. We aggregate the predictions obtained from each indicator to a
single number by taking the average of the predictions.

2.3 MIDAS Regressions

The final class of models that we consider is MIDAS (mixed data sampling) regressions
(Ghysels et al., 2007). The model relates quarterly GDP growth at time t to its value in the
previous quarter, and to monthly lags of x according to:

yt = φ0 + φ1yt−3 +

p∑
j=0

βjxt−j + ξt.

MIDAS regressions can suffer from parameter proliferation problems, in particular when the
frequency mismatch is large. For this reason, the parameters βj are often approximated by
a low-dimensional polynomial, whereby the number of parameters to estimate is reduced.
However, we use only p = 4 lags and instead use the UMIDAS approach suggested by Foroni
et al. (2015), who advocate estimating the parameters freely if the frequency discrepancy
is low. We estimate one MIDAS regression per explanatory variable, and aggregate the
individual forecasts by averaging the individual forecasts. Pooling single-indicator models
as a way of handling large sets of indicators is a strategy with demonstrated success in the
literature, see, for example, Kuzin et al. (2013) for multi-country evidence and den Reijer
and Johansson (2019) for a successful application to Swedish data.

3 Data

Over time, common practice in nowcasting has shifted from including a large number of
disaggregate series to using a more modest amount of aggregate variables. Table 1 contains
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Table 1: Summary of Data Used in Factor Models

Country Reference Data

Euro Area Angelini et al. (2008) 85 variables
Germany Bundesbank (2013) >100 variables
Sweden Andersson and den Reijer (2015) 126 variables
UK Anesti et al. (2017) 60 variables
USA Bok et al. (2017) 32 domestic
Canada Chernis and Sekkel (2017) 17 domestic, 6 foreign
Switzerland Galli et al. (2019) 536 domestic, 84 foreign
Euro Area Bańbura and Saiz (2020) 30 variables

a non-exhaustive list of selected nowcasting models that are publicly described by major
institutions. Around the beginning of the 2010s, nowcasting models used by the ECB,
Deutsche Bundesbank and Sveriges Riksbank included a large number of disaggregate time
series (ECB, 2008; Bundesbank, 2013; Andersson and den Reijer, 2015). More recently
developed models at the Federal Reserve Bank of New York (Bok et al., 2017), Bank of
Canada (Chernis and Sekkel, 2017) and the ECB (Bańbura and Saiz, 2020) instead leverage
a much smaller amount of data. Galli et al. (2019) use a very large dynamic factor model
for nowcasting Swiss GDP growth, saying that their going against the current tendency of
medium-sized models can be explained by a lack of hard data that are timely available and
that have well-established predictive power.

We take note of the evolvement of practice to primarily focus on aggregates and use a
total of 34 time series. The variables we select reflect several aspects of the economy, from
labor market developments to consumption and production. We include variables that are
routinely monitored by Swedish forecasters, and variables that often make the news because
they carry important information on the state of the economy. Because our interest lies in
exploiting historical empirical relationships to nowcast GDP, we are agnostic with respect to
theory and include variables that could potentially correlate with GDP even if theoretically
guided causality is absent. The variables are listed in Table 2.

The table displays the variables split into three blocks: a small, core set of variables, a
medium-sized augmented set, and a large set that comprises all of the listed variables. The
division into smaller sets of core variables is based on balancing timeliness of data releases
with experience of what indicators are useful predictors for GDP growth. The medium and
large blocks include the variables listed in the smaller blocks, and so the total number of
variables for each block size is 6, 13, and 34 variables. All time series, except GDP, enter
our models as monthly variables.

4 Forecast Evaluation

We conduct a pseudo-real-time forecast evaluation to assess the models’ forecasting ability.
The evaluation period is 2010Q1–2019Q4, and we make out-of-sample forecasts on the 4th
and 18th day of each month. At each forecast origin, we replicate the release pattern of data
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Table 2: Summary of Data. The medium block includes variables listed in the small block,
and the large block includes variables listed in both the medium and small blocks.

Trans- Publication
Mnemonic Description Category formation lag (days)

S
m

a
ll

b
lo

ck

afvtots Redundancy notices Labor market - 15
bhuscon100s Consumer confidence Survey - -6
sesurv0242 PMI, total services Survey - 3
pviindufs Production value index, industry Production pc 39
ussurv1055 PMI, total manufacturing, USA International - 1
nbnpmpfs Gross domestic product Production pcq 60

M
ed

iu
m

b
lo

ck

arali1574s Unemployment rate Labor market diff 18
btvi201s Prod. volume (expectations) Survey - -6
sesurv0177 PMI, total manufacturing Survey - 1
setrad1516 Household consumption indicator Retail/consumption pc 41
ESI euroarea19 Economic sentiment, Euro area International - -2
pvitje5fs Production value index, services Production pc 39
uextotsfs Foreign trade, export Production pc 29

L
ar

ge
b

lo
ck

agpers Aggregate gross pay Labor market pc 43
asy1574s Employment Labor market pc 18
ati1574s Hours worked Labor market pc 18
btotcons Total industry indicator Survey - -6
btviordps New orders (outcome), manuf. Survey - -6
btvi101s Prod. volume (outcome), manuf. Survey - -6
kifi Economic sentiment Survey - -6
sesurv0188 PMI, planned production Survey - 1
sesurv0249 PMI, planned business volume Survey - 3
bt regs New registrations, passenger cars Retail/consumption log 4
omsfs Retail trade, sales volume Retail/consumption pc 26
hox HOX real estate price index Housing pc 19
omsbr Real estate transactions Housing pc 10
seb bo SEB housing survey Housing pc 8
kpifs Underlying inflation Prices pc 11
pppb e Producer price index Prices pc 26
usprod1022 Industrial production index, USA International pc 16
euprod0002 Industrial production index, EU International pc 43
qorbctifs Orders in industry Production pc 39
seprod2406 Electricity consumption Production pc 41
uimtotsfs Foreign trade, import Production pc 29

Note: Transformation keys: diff = first difference, log = natural logarithm, pc = month-on-
month percentage change, and pcq = quarter-on-quarter percentage change. The final column
shows after how many days following the end of the reference period data are published. A
negative number means that data are published the given number of days before the end of the
reference period.
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using the stylized publication calendar presented in Table 2. We use data as of September
2020 in recreating the real-time data available at each forecast origin since many variables
are not revised and historical vintages are unavailable. The sole exception is GDP, for which
we use historical vintages so that the data available at each forecast origin more truthfully
mimics what was known at that time. We use a rolling window of 15 years of data for
estimation, and evaluate forecasts against the first published outcome.

4.1 Comparison of Baseline Models

We begin by comparing the root mean squared error (RMSE) within each class of models
with respect to the size of the model. Figure 1 displays the RMSE for each model and model
size as a function of the number of days until the first release.1

Figure 1a shows the forecasting performance of the dynamic factor model. The medium-
scale model has historically produced forecasts with higher precision during the nowcasting
quarter. For backcasts, the large model has instead been better. Of all three model sizes,
the model based on the large set of variables is the only version that shows a decreasing
RMSE as more information is obtained throughout the quarter.

Among the bridge equation models displayed in Figure 1b, the small-scale model has a
small edge over the medium-sized version. The model based on the large set of variables
is on par with the two smaller versions in the beginning of the nowcasting quarter, but its
nowcasts do subsequently not improve at the same rate.

The RMSEs for the MIDAS regressions (Figure 1c) show that the medium-sized model
has been more accurate at every horizon evaluated. The model based on the large set of
indicators performs comparably better than the small-scale model, which stands in contrast
to the results for the bridge equations.

Figure 2 shows a comparison of selected versions from each model class. The figure also
includes a pooled forecast. The pooled forecast is computed by averaging over the three
models’ forecasts.

The figure shows that our MIDAS and bridge equation models give clear improvements
compared with the dynamic factor model, and that all methods improve at the same rate
with more information. The medium-sized MIDAS model shows a small advantage over the
small-scale bridge equation model at most horizons, although the difference is occasionally
negligible. Furthermore, the figure shows that pooling forecasts by a simple unweighted
average leads to better forecasts. The difference between the RMSE of the pooled forecast
and that of MIDAS is tied at two of the considered horizons, but otherwise in favor of
pooling.

To get a better understanding of the forecasts, Figure 3 shows the nowcasts made on the
18th day of the final month of each quarter. The three models’ nowcasts have, for the most
part, been relatively similar, in particular the nowcasts by the MIDAS and bridge equation

1In additional results (not reported here), we have also evaluated mixed-frequency VARs. However, these
models, which are larger and more heavily parametrized than the alternatives we report here, occasionally
exhibit unwieldy behavior and are generally unstable due to the fact that many of the time series we include
are short and plagued by missing values for long periods of time in the beginning of the estimation samples.
Other studies—when time series are not as short as ours—have found large mixed-frequency BVARs to be
useful for forecasting, see for example Schorfheide and Song (2015); Cimadomo et al. (2020).
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(c) MIDAS regressions

Figure 1: RMSE for forecast errors, 2010Q1–2019Q4
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Figure 3: Nowcasts of GDP Growth. The nowcasts are made on the 18th day of the final
month of each quarter.

models. One clear characteristic that is evident in the figure is that forecasts made by these
two models are less volatile and vary less over time than those made by the dynamic factor
model. The former two models thus exhibit a much larger degree of inertia. The dynamic
factor model forecast, on the other hand, is subject to more movement, and the downside
is that it occasionally makes larger forecasting errors, as for example in 2010Q4, 2011Q3,
2012Q4, and 2017Q1. The sluggishness likely explains the success of MIDAS and bridge
equation models in terms of RMSE since they avoid some of the larger errors made by the
dynamic factor model. Nevertheless, the dynamic factor model’s tendency to make forecasts
that deviate more from the local trend means that it is closer to some of the more atypical
outcomes, as in the beginning of 2010.

4.2 Alternative Specifications

We next investigate the role of certain specification choices. To increase the relevance of this
exercise for current nowcasting conditions, we shorten the evaluation period to cover 2016Q1–
2019Q4, and for space considerations we limit the scope to a subset of horizons considered in
the previous section. The alternative specifications we consider vary between the respective
models. For the dynamic factor model, we assess the role of international variables by
comparing our benchmark model with a model without any international variables, and one
with additional international variables. The model with an enriched set of international
variables contains 8 foreign variables in total, as compared to the benchmark model’s 4
foreign variables.2 To see whether a different number of lags would change the performance
of the model, we let the number of lags of the factor that is included in each equation—r in
(1)—be either 1 or 6, respectively, instead of 3 as in the baseline version.

For the bridge equation model, the benchmark specification employs independent AR(4)
models for the monthly auxiliary regressions, and the quarterly regressions are based on

2The four additional international variables that we include are Euro area manufacturing PMI, Euro
area services PMI activity index, the Aruoba-Diebold-Scotti business conditions index for the US, and US
imports.
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regressing GDP growth on its lag as well as the contemporaneous and first lag of the ag-
gregated monthly variable. To see how the specification of the monthly regressions affect
the forecasting performance, we abandon the AR(4) regressions and instead use a monthly
Bayesian VAR with four lags and an independent normal-Wishart prior (Karlsson, 2013).
We evaluate the role of the specification of the quarterly regressions by removing the autore-
gressive term, thereby only regressing GDP growth on the contemporaneous and first lag of
the aggregated monthly variable.

The baseline MIDAS specification that we employ is based on the UMIDAS approach
taken by Foroni et al. (2015). To assess whether an alternative specification could improve
the MIDAS model’s forecasting performance, we switch to 12 lags and an exponential Almon
lag parametrization of the model. Such a formulation of the model allows for large number of
lags without increasing the number of parameters to be estimated, see Ghysels et al. (2007)
for more details. Similar to the bridge equation model, we also evaluate our baseline model
with the AR(1) component removed.

Finally, we investigate whether data-driven pooling strategies can improve upon the
simple equal-weighted average that we considered in the previous section. The methods that
we examine are stacking of means (Wolpert, 1992; Breiman, 1996) and inverse MSE weights
(Bates and Granger, 1969; Timmermann, 2006). For the former, we begin by regressing
the outcome in 2010Q1–2015Q4 on the two models’ nowcasts for the same period, and
compute the pooled nowcast for 2016Q1 by feeding the model-specific nowcasts through the
estimated regression model. We then add 2016Q1 to the estimation sample, and continue in
this manner throughout the evaluation period. The inverse MSE weights are based on the
inverse of the MSE observed thus far when each nowcast is made. Table 3 shows the results
of the evaluation for the alternative specifications.

The results show that none of the alternative specifications of the dynamic factor model
leads to improved forecasts across all horizons, and that differences in performance are
generally small. Adding additional foreign variables does not improve the model’s predictive
ability except for a minor increase in the second month of the nowcasting quarter, while
removing all international variables leads to small improvements for the final nowcast as well
as the backcast. Increasing the model’s complexity by adding further lags of the factor in the
observational equations of the model gives a substantial worsening of the first nowcast, and
a small improvement to the second nowcast. Reducing the number of factor lags brings close
to a 10 % reduction in RMSE compared with the benchmark specification for the second and
third nowcasts, but comes at the cost of a notable increase in the RMSE of the backcast.

Turning to the bridge equation model, we find no improvement from dropping the autore-
gressive term from the quarterly regressions. The results also show that a joint forecasting
approach to the monthly variables, utilizing a standard BVAR, is inferior to the simpler
AR(4) approach that the benchmark uses with RMSE values that tend to increase with
more information.

MIDAS regressions improve some at the final nowcast and backcast by eliminating the
AR term from the models, but differences are small and its performance is inferior at the
first two nowcasting horizons. Changing to the exponential Almon specification with 12 lags
yields no major changes, with only minor differences at the first nowcast horizon and the
backcast.

Lastly, we see no evidence that data-driven pooling is superior to the equal-weighted aver-
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Table 3: RMSE, 2016Q1–2019Q4. Nowcasts and backcasts are made on the 18th day of each
respective month. Backcast here refers to the forecast made in the first month following the
end of the reference quarter.

Nowcast origin
Model Month 1 Month 2 Month 3 Backcast

Dynamic factor model
Benchmark 0.53 0.46 0.45 0.46

No international 0.56 0.46 0.42 0.45
Additional international 0.54 0.45 0.46 0.48

r = 1 factor lags in eqs. 0.54 0.41 0.40 0.49
r = 6 factor lags in eqs. 0.66 0.42 0.45 0.48

Bridge equation model
Benchmark 0.36 0.35 0.35 0.40

No AR term 0.36 0.35 0.36 0.41
Monthly BVAR 0.35 0.36 0.37 0.39

MIDAS regressions
Benchmark 0.36 0.35 0.36 0.34

No AR term 0.38 0.36 0.34 0.33
12 lags, exp. Almon 0.35 0.35 0.36 0.36

Pooled forecast
Benchmark 0.34 0.35 0.36 0.38

Inverse MSE 0.34 0.35 0.36 0.40
Stacking 0.47 0.44 0.43 0.43
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age that we use as our benchmark pooling strategy. Stacking leads to inferior RMSEs, while
using inverse MSE weights yields the same level of forecasting precision as the benchmark
except for at the backcast. These results are thus in line with many empirical studies that
have identified a so-called forecast combination puzzle (Smith and Wallis, 2009; Claeskens
et al., 2016).

In summary, we find no convincing evidence that any of the alternative model specifica-
tions is superior to our benchmark specifications. We therefore choose to keep our benchmark
specifications intact.

4.3 New Data Sources

The rapid deterioration of the economic outlook following the spread of the Covid-19 virus
highlighted the need for data sampled more frequently, and data that are released more
rapidly. In this section, we evaluate if some of these new data help improve our dynamic
factor model’s nowcasts. We proceed as in the previous section, and evaluate selected now-
casts and backcasts in 2016Q1–2019Q4. Three new data series that were first released during
the beginning of the pandemic are added to the benchmark dynamic factor model, one at a
time and all together. The three series are: the Weekly Economic Index (WEI) published
by the Federal Reserve Bank of New York, the monthly Activity Indicator (AI) published
by Statistics Sweden, and the Retail Indicator (RI) published by Statistics Sweden.

WEI is a weekly index that closely tracks real economic activity in the US (Lewis et al.,
2020). Because our model operates at the monthly frequency, we take a pragmatic approach
and at a given forecast origin use the observed mean of the available weekly observations
as a proxy for the monthly observation of WEI. The monthly observation is thus revised
several times a month as new weekly releases are available. The index is published on the
first Tuesday following the end of the reference week.

The Activity Indicator is a new indicator that ”is intended to highlight the collected
activities in the Swedish economy in a way similar to the description of growth in GDP”
(Statistics Sweden, 2020b). As a complement, Statistics Sweden has also initiated the publi-
cation of a monthly indicator for retail sales that is based on preliminary statistics from the
VAT register (Statistics Sweden, 2020a). The two indicators are published approximately
20–25 (RI) and 35–40 (AI) days after the end of the reference period.

The results of the forecast evaluations using these new data sources are presented in
Table 4. Contrary to what one would expect, adding the two new Swedish indicators to the
benchmark model leads to no better nowcasts according to the RMSE values. The differences
are, however, minor and should not be taken to mean that these new indicators are not useful
for nowcasting. A complication in evaluating the new data series in a forecasting application
is that their history is relatively short—the indicators published by Statistics Sweden start in
2011, and so at the first nowcast in the evaluation only five years of data are made available
to the model. Thus, the models that include the new indicators may be adversely affected by
a lack of data and estimation uncertainty. Inclusion of the Weekly Economic Index for the
US in the model reduces the RMSEs of the nowcasts for all three forecast origins, with no
difference for the backcast. Nevertheless, despite the additional improvements obtained by
adding the Weekly Economic Index to the benchmark dynamic factor model, it is still behind
in terms of performance compared with our MIDAS regressions and our bridge equation
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Table 4: RMSE, 2016Q1–2019Q4. Nowcasts and backcasts are made on the 18th day of each
respective month. Backcast here refers to the forecast made in the first month following
the end of the reference quarter. The National Institute of Economic Research’s (NIER)
forecasts are usually published by the end of the last month of a quarter, but the exact day
varies.

Nowcast origin
Model Month 1 Month 2 Month 3 Backcast

Dynamic factor model
Benchmark 0.53 0.46 0.45 0.46

Weekly Economic Index (WEI) 0.49 0.45 0.44 0.46
Activity Indicator (AI) 0.55 0.47 0.45 0.45

Retail Indicator (RI) 0.55 0.46 0.45 0.46

WEI+AI+RI 0.53 0.48 0.45 0.47

Other models
Bridge 0.36 0.35 0.35 0.40

MIDAS 0.36 0.35 0.36 0.34
Pooled 0.34 0.34 0.36 0.38

Benchmark forecast
NIER 0.33

model. Evaluated using approximately the same amount of information, the latter show
RMSEs that are only marginally inferior to the forecasts made by the National Institute of
Economic Research.

To interpret the magnitude of the differences in RMSE, Figure 4 shows the nowcasts
from selected models. In general, the model-based nowcasts are typically similar, whereas
the NIER’s nowcasts stand apart to a greater degree. Nevertheless, the model-based nowcasts
agree well with NIER’s on several occasions, but were consistently higher between 2017Q3
and 2019Q2, and sometimes for the better.

5 Nowcasting During the Covid-19 Pandemic

The between-crises period 2010Q1–2019Q4 was characterized by relatively stable growth.
However, economic conditions changed rapidly as the Covid-19 pandemic started to spread
around the world in early 2020. In this section, we study this episode in some more detail
from the perspective of nowcasting. We do so by first considering if the new data sources
discussed in the previous section help produce a more timely signal of an impending se-
vere downturn. We then examine the impact that the pandemic had on nowcasts through
parameter instability by comparing nowcasts from models with and without re-estimation.
Throughout the remainder of this section, we estimate models and produce nowcasts on
Friday every week.
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Figure 4: Nowcasts, 2016Q1–2019Q4. Model-based nowcasts are produced on the 18th of
the final month of each quarter. The NIER’s nowcasts are usually published towards the
end of the final month of each quarter.

5.1 Using New Data Sources to Nowcast 2020Q2 and 2020Q3

In Section 4.3, we evaluated three new indicators of economic activity and whether our
factor model’s nowcasts improved by adding these to the model. We next evaluate the same
indicators in predicting the severe economic downturn that hit Sweden with full force in the
second quarter of 2020. For ease of readability, we present in Figure 5 the benchmark model’s
nowcast and nowcasts obtained after adding the Weekly Economic Index, and all three
indicators (Weekly Economic Index, Activity Indicator, Retail Indicator). Furthermore, we
also make nowcasts where we exploit weekly data on redundancy notices.3 We take the
same approach as for the Weekly Economic Index and scale the weekly numbers to monthly
numbers by assuming that the observed daily mean persists throughout the remainder of
the month. Figure 5 shows the nowcasts.

The first panel of the figure shows that before the effects of the pandemic started to show
in the data, all models produced nowcasts for 2020Q2 that were strikingly similar. However,
as March progressed nowcasts started to diverge. Adding the new indicators lowered the
nowcast by approximately 2 percentage points during the second half of March, and using
weekly redundancy notices as a proxy for the monthly observation pulled the nowcast down
even further and earlier in March and early April. The model with weekly redundancy
notices subsequently revised its nowcast upwards in April, which is explained by each weekly
release of newly reported redundancy notices in April being lower than the previous week’s.
The proxy for the monthly observation, obtained from the weekly data, was thus revised
downwards each week. The two models with the Weekly Economic Index and all three
indicators, respectively, reached the same nowcast one week later, at which point the model
with weekly redundancy notices had started to revise its nowcast upwards. The benchmark
model, without weekly redundancy notices and any of the three new indicators, reached its
most pessimistic point an additional week later. While the precise trajectories in the figure

3The Swedish Public Employment Service began releasing weekly figures of reported redundancy notices
on March 14. Each Monday, the reported number of redundancy notices for the preceding week was reported.
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Figure 5: Nowcasts of GDP Growth During 2020Q2 and 2020Q3. ’Benchmark’ is the bench-
mark specification of the dynamic factor model, which is subsequently augmented with: the
Weekly Economic Index (’+WEI’); the Weekly Economic Index, Activity Indicator, and Re-
tail Indicator (’+All’); all three indicators and weekly observations of redundancy notices
(’+All, WRN’).
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are somewhat different, all versions here considered interpreted the inflow of data as more
and more pessimistic until reaching a tipping point in April. Beyond that point, they all
displayed a more optimistic interpretation of the economic outlook. While the magnitudes
are arguably different, this interpretation of the economic situation is in accordance with that
made by the National Institute of Economic Research, which revised its forecasts in June
and August upwards due to more positive signals since the middle of April. The additional
indicators helped in May–August to keep the nowcast and backcast for 2020Q2 at a lower
level, which ultimately also turned out to be closer to the outcome of -8.3. The nowcasts
produced by the MIDAS and bridge equation models were throughout the quarter much less
volatile—a pattern also demonstrated historically in Figure 4—but also much further from
the outcome, ending at approximately -1 as opposed to the dynamic factor models whose
final predictions came in around -4.

The second panel, Figure 5b, displays the evolution of the nowcast for 2020Q3. Overall,
all models interpreted new data from the second half of the quarter and onwards as more
positive with an upwards trending development. The nowcasts from the various versions of
the dynamic factor model are both qualitatively and quantitatively very similar, predicting
GDP to grow by a little more than 4 percent in 2020Q3 from early September. Moreover, the
models’ nowcasts were closely in line with the two nowcasts made by the National Institute
of Economic Research in August and September. The bridge equation model again shows a
much more slowly changing prediction that in the end failed to pick up the magnitude of the
economic recovery, whereas the MIDAS model displays more substantial upwards revisions
in September and October that eventually leads to predictions that are closer to the outcome
than the bridge equation model’s. In comparison with the dynamic factor model, however,
its forecasts are still associated with notably larger forecast errors.

5.2 Decomposing the Nowcasts

In this section we decompose the revisions of the nowcasts into contributions to provide
further understanding of the nowcasts in Figure 5.4 The contributions to the revisions are
divided into three main categories: parameters, historical data, and new data releases. The
contributions from new data releases are further decomposed into contributions from different
categories of variables following the categorization in Table 2 and the method by Bańbura
and Modugno (2014). The computation of the contribution from a new data release has the
form

Contribution from variable j = weightj × (Outcomej − Forecastj).

That is, how much a new data release for variable j contributes to the revision of the forecast
for GDP growth depends on the weight of variable j, itself a function of the model dynamics,
and if the new data release is a surprise in the sense that the new datum deviates from the
model’s previous forecast of it. An important implication of the decomposition is that the
order of releases matter, since new data for variable j can change Forecastj′ for variable j′.
Thus, data that are released with significant publication delays will only warrant a revision
of the GDP forecast if these releases were unexpected given data already available.

4More details are provided in Appendix B.
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Figure 6: Contributions to Revisions of the Dynamic Factor Models’ Nowcasts
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The decompositions are presented in Figure 6. Figure 6a shows the contributions to
the benchmark model’s nowcast for 2020Q2, which makes it clear that the major changes
observed in Figure 5a have primarily been driven by parameter revisions and survey data.
Unsurprisingly, survey data accounts for most of the revisions due to new data releases:
because it is released prior to all other data, contributions computed for other categories are
calculated given the already observed surveys. Nevertheless, we see some larger revisions
that stem from variables covering the housing market and the labor market.

Comparing Figure 6a with Figure 6c, we see that in the latter large contributions from
international variables is now observed. The explanation is that the Weekly Economic Index,
measuring real economic activity in the US, is included among the new indicators used for
Figure 6c. Because it is released prior to the survey data, it assumes some of the contribution
that was previously assigned to the survey category. The contributions from historical data
revisions that is now observable in Figure 6c can be attributed to the monthly observation
of the Weekly Economic Index being revised throughout each month as new weekly releases
are available.

The decompositions of revisions of nowcasts for 2020Q3, displayed in Figure 6b and 6d,
show similar patterns with survey data explaining most of the revisions to the benchmark
model’s nowcast. When the new indicators are added, the international category picks up
some of these revisions at an earlier stage through the Weekly Economic Index. Comparing
the two figures, it is also evident that the inclusion of the Weekly Economic Index picks
up some of the revisions previously attributed to the labor market as seen on July 17 and
August 21.

5.3 Nowcasts Without Re-Estimation

The previous section showed that nowcasts were subject to large revisions during the peak
of the pandemic solely due to parameters being re-estimated. A natural question to ask
is therefore: does re-estimation during the Covid-19 pandemic lead to inferior nowcasts?
Schorfheide and Song (2020) estimate their mixed-frequency BVAR on the January 31, 2020
vintage so that shock variances in the period following the most acute phase of the pandemic
are of the same magnitude as in the pre-pandemic era. Lenza and Primiceri (2020) develop
a method for estimating VAR models that explicitly accounts for a sudden increase in shock
variances, whereafter the temporary increase decays, and Antoĺın-Dı́az et al. (2020) explicitly
account for outliers. Similarly, the Federal Reserve Bank of New York ceased in 2020Q2 to
re-estimate its nowcasting model, instead using the model estimated in the first quarter of
2020.5 On the other side of the spectrum, the GDPNow model developed by Higgins (2014)
and published online by the Federal Reserve Bank of Atlanta previously removed outliers in
estimation, but since April 30, 2020, such preprocessing of the data is no longer conducted
(Federal Reserve Bank of Atlanta, 2020).

To see the effect of re-estimation and parameter instability on our nowcasts, we show in
Figure 7 nowcasts for 2020Q2 and 2020Q3. The models that are not subject to re-estimation
are estimated on March 6. We compute nowcasts every Friday from the first week of the

5As of November 3, 2020, the online Nowcasting Report, available at https://www.newyorkfed.org/

research/policy/nowcast.html, reads: ”The Nowcast estimates are [...] based on the same parameters
used during 2020:Q2, based on data through the end of 2020:Q1”.
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nowcast quarter until the publication of the outcome. The nowcasts are presented in Figure
7.

The figure shows that the estimation sample chosen does matter. The MIDAS and bridge
equation models’ nowcasts are only marginally affected by re-estimation for 2020Q2, whereas
the dynamic factor model displays a much larger discrepancy between nowcasts derived from
a repeatedly re-estimated model, and a model that keeps the model estimated on March 6
fixed. The re-estimated model returns more negative nowcasts already from the beginning
of March and onwards, and the associated forecasting errors are smaller if the model is re-
estimated. In 2020Q3, the difference between re-estimated and fixed-estimation forecasts
decreases up through the middle of the quarter, at which point the fixed-estimation forecast
settles at 1 percent, while the re-estimated model’s forecasts increase to approximately 4.5
percent—only 0.2 percentage points from the official advance estimate published in early
November. Thus, we find that whether one opts to re-estimate the dynamic factor model
does matter, and that in our case re-estimation leads to nowcasts and backcasts that, in
hindsight, are more reasonable. For our MIDAS and bridge equation models, the differences
are negligible for the 2020Q2 forecasts, but the re-estimated MIDAS model eventually yields
smaller forecasting errors for 2020Q3 than its fixed-estimation counterpart.

6 Conclusion

We have examined the use of short-term forecasting models for nowcasting Swedish GDP
growth. Our key results show that simple specifications of MIDAS regressions and bridge
equation models outperform a dynamic factor model in an evaluation period set to 2010Q1–
2019Q4. We find that the three methods are idiosyncratic in their preference for data:
the most satisfactory forecasting results for each method are obtained from a large version
of the dynamic factor model, a medium-scale set of aggregated MIDAS regressions, and a
small bridge equation model. These results point to the importance of leveling conditions
to compare forecasting models fairly—by evaluating three different sizes of models for each
method, we decrease the risk of biasing our results in favor of a particular method. We
further examine various specification choices and find only marginal differences in historical
forecast performance, suggesting that our results are not driven by specific details of our
benchmark specifications.

For the most part, the dynamic factor model’s nowcasts are qualitatively similar to
the MIDAS and bridge equation models’ nowcasts, but the latter models exhibit a larger
degree of inertia and less volatility over time. When we use our models for nowcasting
2020Q2 and 2020Q3, the sluggishness becomes immediately clear: the MIDAS and bridge
equation models react slowly during 2020Q2, and not to the same degree as the dynamic
factor model. For 2020Q3, the same behavior is evident with the forecast made by the
dynamic factor model eventually stabilizing close to the advance estimate, and remarkably
close to professional forecasts published around the same time. We therefore find a clear
discrepancy between, on the one hand, better historical forecasting performance, and, on
the other hand, usefulness in the pandemic-induced downturn and subsequent recovery in
2020Q2 and 2020Q3.

Our results emphasize the need to consider multiple models, a notion that has been
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Figure 7: Forecasts of GDP Growth at Different Points in Time. Solid lines are forecasts
made by re-estimated models, and dashed lines show forecasts made by models estimated
on March 6.
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stressed by many, see for example Anesti et al. (2017); Bańbura and Saiz (2020) for re-
cent descriptions of how the Bank of England and the European Central Bank maintain
multiple models in informing their forecasts. The clear divide in performance that we doc-
ument between normal and crisis times cannot be easily remedied by model combination
approaches that rely on average historical performance: because change is sudden, a suc-
cessful combination strategy needs to quickly redistribute its weight, for example through
outcome-dependent weighting (Kapetanios et al., 2015) or pure judgmental assessment of
how much each model should be incorporated into the combined forecast (Anesti et al.,
2017). The idea of using similar historical episodes in producing forecasts at a specific
point in time is another promising alternative that could potentially combine good predic-
tive performance historically with rapid and accurate responses during turbulent times, as
Dendramis et al. (2020); Foroni et al. (2020) discuss. Lerch et al. (2017) describe the danger
of evaluating models conditional on extreme events, and one should therefore be wary of
arguing that our dynamic factor model is a better model in general because it is more suc-
cessful in 2020Q2–2020Q3. Chauvet and Potter (2013) document clear divides in forecasting
performance between periods of boom and bust, and our results can be understood from
the perspective of model performance varying with the business cycle. In light of this, our
results thus make a strong case for maintaining multiple models to diversify risks, and closely
monitor disagreements and rapid changes that occur both jointly and idiosyncratically.
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Angelini, E., Rünstler, G., and Bańbura, M. (2008). Estimating and forecasting the euro
area monthly national accounts from a dynamic factor model. Working Paper Series 953,
European Central Bank.
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A Estimating the Dynamic Factor Model

A.1 State-Space Formulation

We define the dynamic factor model as a standard linear state-space model with normally
distributed errors to seamlessly handle missing values and mixed frequencies. The state-space
model is

αt+1 = Aαt +Bet

yt = Cαt,

where et ∼ N(0, I) and the state vector αt is

αt =



ft
...

ft−r̄
xt
...

xt−p̄


where r̄ = max(r, q, 4) and p̄ = max(p, 4). The factor model can be rewritten as

xi,t = λi,0ft +
r∑

j=1

λi,jft−j +

p∑
k=1

φi,kxi,t−k + εi,t

= λi,0

q∑
j=1

ϕjft−j +
r∑

j=1

λi,jft−j +

p∑
k=1

φi,kxi,t−k + εi,t + λi,0ut

=
r∑

j=1

(λi,j + λi,0ϕj)ft−j +

p∑
k=1

φi,kxi,t−k + εi,t + λi,0ut,

where q ≤ r and ϕj = 0 if j > q. Let λ̄i,j = λi,j + λi,0ϕj. The transition matrix A is
constructed as

A =

 A1
r̄×r̄

0
r̄×np̄

A2
np̄×r̄

A3
np̄×np̄

 , A1 =


ϕ1 ϕ2 · · · ϕr̄−1 ϕr̄

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0



A2 =


λ̄1,1 λ̄1,2 · · · λ̄1,r̄

λ̄2,1 λ̄2,2 · · · λ̄2,r̄
...

...
. . .

...
λ̄n,1 λ̄n,2 · · · λ̄n,r̄

0n(r̄−1)×1 0n(r̄−1)×1 · · · 0n(r̄−1)×1

 , A3 =


Φ1 Φ2 · · · Φp̄−1 Φp̄

In 0 · · · 0 0
0 In · · · 0 0
...

...
. . .

...
...

0 0 · · · In 0
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Let et = (ut, σ
−0.5
1 ε1,t, . . . , σ

−0.5
n εn,t)

′. Then

B =
(
λ0 diag(σ1, . . . , σn).

)
The matrix C that relates the observed values to the state vector imposes the following
relation for monthly variables (i = 1, . . . , n− 1):

yi,t =

{
xi,t, if yi,t is observed

∅, otherwise.

For the final quarterly variable (i = n), the relation is

yi,t =

{
1
3
(xi,t + 2xi,t−1 + 3xi,t−2 + 2xi,t−3 + xi,t−4), if yi,t is observed

∅, otherwise.

A.2 Prior Distributions

The prior distribution for parameters relating factor lags to observables is λi,0 ∼ N(0.5, 1),
and λi,j ∼ N (0, (1 + j)−1) for j = 1, . . . , r. Priors for parameters for own lags of observables
follow a similar form, and are φi,k ∼ N (0, (1 + k)−1) (k = 1, . . . , p), but equipped with
the additional constraint that the lag polynomial has stable roots. Finally, autoregressive
parameters in the factor equation are assumed to define a stable lag polynomial, with prior
distributions given by ϕ1 ∼ N(0.5, 0.5) and ϕ` ∼ N (0, (1 + `)−1) for ` = 2, . . . , q. All data
enter the model in standardized form, with zero mean and unit variance.

A.3 Posterior Sampling

The model is estimated using Markov Chain Monte Carlo (MCMC) and Gibbs sampling.
The Gibbs sampler cycles through the following steps.

p(f,X|Y, λ, φ, ϕ, σ2) We use disturbance smoothing using the state-space formulation of
the dynamic factor model laid out in the previous section to sample from the posterior
distribution of factors and missing observations. See Durbin and Koopman (2012) for a
detailed description.

p(λ, φ, σ2|X, f) The posterior conditional on X and f reduces to a standard linear re-
gression problem with a normal-inverse gamma posterior. Each equation is conditionally
independent of the others, and we therefore sample p(λi, φi, σ

2
i |Xi, f) equation-by-equation.

p(ϕ|f) We sample from the posterior of ϕ conditional on f using Bayesian linear regression
with known variance.
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B Decomposing Forecast Revisions in the Dynamic Fac-

tor Model

Let: t2 > t1 be two time points, Ωt1 and Ωt2 be the information sets at the respective points
in time, and θt2 and θt1 be parameters estimated at each time point. For now, we suppose
that these are known and fixed. Because of historical data revisions, Ωt1 is not necessarily a

subset of Ωt2 . Partition Ωt2 into two disjoint subsets, Ωt2 = Ω
(1)
t2 ∪Ω

(2)
t2 so that Ω

(1)
t2 ∩Ω

(2)
t2 = ∅,

where Ω
(1)
t2 refers to the same observations as Ωt1 . Thus, if no historical data revisions have

taken place, then Ωt1 = Ω
(1)
t2 . Let t be the period that is the forecasting target. We can then

write the forecast revision as consisting of three parts according to

E(yt|θt2 ,Ωt2)− E(yt|θt1 ,Ωt1) =

E(yt|θt2 ,Ωt1)− E(yt|θt1 ,Ωt1)︸ ︷︷ ︸
Parameters

+E(yt|θt2 ,Ω(1)
t2 )− E(yt|θt2 ,Ωt1)︸ ︷︷ ︸

Historical data

+E(yt|θt2 ,Ωt2)− E(yt|θt2 ,Ω(1)
t2 )︸ ︷︷ ︸

News

.

The first part measures the contribution to the overall forecast revision that stems from
a change in parameters, since it is computed as the difference between the forecast given
the new parameters and the old data minus the forecast given the old parameters and the
old data. The second term is computed as the difference between the forecast produced
using revised and un-revised data while using the new parameters in both cases. The final
term is the news part and represents the revision caused by the new data in Ω

(2)
t2 . Bańbura

and Modugno (2014) analyze this term in more detail and derive a way of decomposing the

overall news revision into contributions from each new data release included in Ω
(2)
t2 . To

calculate the contributions in practice, we compute the various expectations using Kalman
filtering with each θ replaced by a draw from the posterior distribution.
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