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1. INTRODUCTION1

After a period of widespread optimism regarding their usefulness and future role,

econometric models came under much criticism in the 1980-ies. It was realised that model

forecasts are hardly reliable without extensive (and cumbersome) fine-tuning. Furthermore,

due to the interdependence of model variables, even those equations that are estimated with

high precision can give poor forecasts within the context of a model.

Despite this general disappointment, econometric models have survived and are still in use

as much as ever, perhaps with somewhat less publicity. The reason for that is the fact that

some forms of forecasts and assessment of policy effects are necessary for the conduct of

economic policy, and models - in one form or another - are a means of formalising (and

computerising) the assumptions behind a forecasting procedure or a policy simulation.

In this context, evaluation of econometric models from the point of view of their reliability

is of highest importance. As already mentioned, it is not enough to scrutinise each equation

separately, the functioning of the whole equation system has also to be investigated.

One way of assessing forecast reliability is to compute the expected range of the forecast

error, usually summarised by its variance. The latter can be more or less readily obtained

for linear models2 (dynamic forecasts involving quite formidable formulae), but no

formulae are available for non-linear models.

It should be noted that forecast confidence intervals - or any other assessment of expected

forecast error dispersion - are hardly ever reported by the forecasters. This is possibly due

to the fact that these intervals - when they can be assessed at all - often are very wide and,

as such, not very informative. Moreover, any measure of uncertainty connected with

                                               

1 The authors are indebted to Lasse Koskinen and Lars-Erik Öller for valuable comments and discussions.

2 See Goldberger et al. [1961] for static model results and Schmidt [1973, 1976, 1977] for those for dynamic

models. Gajda [1965] gives a review.
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estimation of the equation (which is what prediction error variance describes) is probably

of limited importance in comparison to such error sources as changing coefficients (due to

incorrect linearisation), omitted variables and erroneous assumptions about exogenous

variables. The forecasting record of the model (or of the forecaster) in terms of actual past

forecast errors is usually considered to be a better description of forecast reliability.

While prediction error variance and past forecast record can be of interest to the users of

the model output, there are a number of model evaluation techniques which are mainly of

use to the model builder. In the case of non-linear models, where analytical methods

usually do not exist, these techniques often involve model simulations.

One aspect of model behaviour that is of interest to the model builder is sensitivity to

different forms of errors. This can be investigated using stochastic simulations, as shown

by Gajda [1995]. The method involves generating random numbers from a given (usually

normal) distribution and introducing them as shocks to the model. In particular, stochastic

simulations can be employed to make an empirical investigation into the following aspects

of the model:

- the effects on the forecast of random disturbances,

- the effects on the forecast of random variation in equation parameters (sampling

errors),

- error propagation and accumulation patterns in the model,

- the effects on the forecast of (random) errors in the exogenous variables.

The results of stochastic simulations can provide information on - inter alia - the sampling

distribution of the model forecast. In particular, the model builder may be interested in the

shape of this distribution. If it is not symmetric, the mean (stochastic) forecast will be

different from the median forecast (which under certain conditions is equal to the

deterministic forecast). Furthermore, if the distribution is skewed, a typical stochastic

forecast (represented by the mode) will systematically underestimate (or overestimate)

both the mean and the median forecasts.
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The purpose of the present paper is to investigate KOSMOS, the econometric model of the

National Institute of Economic Research in Stockholm, from the point of view of the first

three aspects mentioned above. The main aim of this exercise is to look for ”weak links” in

the model, i.e. to find out which equations introduce most uncertainty and at the same time

are crucial for the forecast because of their strong influence on it. Thus, our interest is not

only in assessing the forecast error variance as a descriptive statistic, but also - and

primarily - in finding those equations that are important for error propagation and those

coefficients whose values are crucial for the model.

The outline of the paper is as follows. Section 2 discusses the analysis of expected forecast

errors (for linear models) based on analytical formulae. In Section 3, model simulations

and stochastic simulations are defined. The two subsequent sections discuss the purpose of

our experiments and their design, respectively. Section 6 gives a brief description of the

econometric model KOSMOS, whose equations are subject to our investigation. Section 7

describes the results of stochastic simulations with additive equation disturbances. Section

8 presents the results of stochastic simulations with both equation disturbances and

disturbances to the estimated coefficients. Sampling distributions of forecasts are discussed

in Section 9. Section 10 concludes.

2. ANALYTICAL ANALYSIS OF EXPECTED FORECAST ERRORS

Let us define a simple linear model

(1)                                         y = X b + u

with y being a T×1 vector of dependent variable values, X a T×k matrix of explanatory

variables, u a T×1 vector of the random error term values and b a k×1 coefficient vector.

Estimating b by OLS

(2)                                     $b (X X) X y1= −T T

we obtain
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(3)                                    ubXy ˆˆ+=

where  ^ denotes OLS estimates and the superscript  T  a transposed matrix.

For prediction we use the systematic part of the equation:

(4)                                       $ $ $y t = x bt

where xt is the t-th row of the matrix X , t > T  (T being the sample size) and $x t  denoting

the forecast for the exogenous variables.

The ex post forecast error can be written as

(5)        $ $ $ $ $ $ $ $ $u y y x b u x b (x b x b) (x x )b x (b b) ut t t t t t t t t t t t= − = + − + − = − + − +

each of the terms on the right-hand side describing one error source: exogenous variables

values, sampling error (i.e. the error in parameter estimation) and random disturbance.

On an ex ante basis, the forecast precision of a static linear regression can be assessed in

the form of its mean square error (MSE), which is equal to the prediction error variance

when the expected value of the error term is zero:

(6)   E Et t t t( $ ) [( ( $) ]y y x b b u− = − +2 2  = xt σ2 (XT X)-1 xT
t + σ2 = σ2 [xt (XT X)-1 xT

t + 1] ,

where σ2  is the variance of disturbances, usually estimated as the variance of residuals.

In the case of simple regression this formula assumes the form

(7)                   ]
)xx(

)xx(1
1[)ŷy(

1
2

2
22

∑ = −
−++=− T

i i

t
tt T

E σ  ,
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showing that the prediction error depends positively on the disturbance variance (σ2) and

the deviation of the forecast values of the exogenous variables from their sample means

and that it depends negatively on the sample size (T) and the variability of the exogenous

variables in the sample (∑ = −T

i i1
2)xx( ).

The general formula becomes increasingly more complicated in the cases of a dynamic

single equation and of a static linear interdependent system, and hardly tractable in the case

of a dynamic linear interdependent system (cf. footnote 2 above, Gajda [1995] and the

references therein).

There are no general analytical formulae for the prediction error variance of a non-linear

model.

3. DETERMINISTIC AND STOCHASTIC MODEL SOLUTIONS

Linear models can be solved in a non-iterative way using reduced forms for static solutions

and final forms for dynamic solutions. In a reduced form, predetermined variables have

been substituted for contemporaneous endogenous variables; in a final form lagged

endogenous variables have also been substituted for. In the case of a non-linear model, we

are in general not able to derive the reduced and final forms. Instead, iterative procedures

are used.3

Analogously, impact multipliers (i.e. the contemporaneous effects of exogenous variables

on the endogenous ones) in a linear model can be directly obtained from the reduced form.

In a non-linear model, multipliers are neither time nor value invariant and can in general

                                               

3 The Gauss-Seidel method is the most commonly employed (cf. Fromm and Klein [1969] and Klein [1983]).

The exceptional popularity of this method in economics may be due to (besides its simplicity) the fact that for

non-explosive models convergence is always achieved. In numerical methods the approach is known under

the name of simple iterations (cf. Demidowich and Maron [1966], pp. 148-151, 474-485).
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only be computed for a specific data set upon comparison of two solutions. An exogenous

input is changed in one of these model runs and the resultant changes in the endogenous

variables are observed. Multipliers are obtained as the effects of a unit change in an

exogenous variable.

The procedure of obtaining a model solution by means of an iterative method is called

model simulation. Simulation experiments are the most commonly used tools of

investigation of non-linear models. Simulations that abstract from the stochastic character

of the model are called deterministic. In a deterministic simulation, no account is taken of

the uncertainty connected with the estimated model relations. Parameter estimates are

treated as the true coefficients4 and random disturbances are assumed to be equal to zero

(i.e. their expected values).

Simulations allowing for the effects of random shocks to model equations are called

stochastic simulations. They consist of repetitive model solving, each time with a new set

of generated random shocks. These shocks are usually introduced as additive disturbances

or added to equation parameters. Simulation results are summarised by the mean and the

variance of each variable under scrutiny and in each period for which the model has been

solved. Other parameters describing the distribution of stochastic forecasts for any variable

can also be computed, if needed. Stochastic simulations attempt to imitate the effects of

repeated sampling from the real world, a procedure that in reality is not possible in most

economic applications.

An important practical difference between deterministic and stochastic forecasts is that the

latter require much more computer time, in order to perform all the replications needed,

and an extensive programming effort. Another, theoretical difference refers to the

statistical properties of the two types of forecasts in non-linear models.

                                               

4 The only (but common) exception to this rule is the use of constant adjustments, i.e. the adjustments to

equation intercepts.
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While both deterministic and stochastic forecasts are unbiased predictors in linear models,

in general, for a non-linear model a deterministic solution is not an unbiased estimator of

the mean value of the dependent variables5. A deterministic solution is computed (in each

period) for the expected values of the explanatory variables and thus is not necessarily

equal to the expected value of the (non-linear) function of these variables. This is so, since

for the equation system

(8)                                   Y = g(X, u)

where Y is the vector of dependent variables, X is the matrix of exogenous variables, u is

the disturbance vector and g(•) is a non-linear function,

(9)                            E(Y) = E(g(X, u)) ≠ g(E(X), E(u) ) .

Under the usual assumption that E(u) = 0, the right-hand side of equation (9) describes a

deterministic solution.

While a large difference between the mean stochastic forecast and the deterministic

forecast indicates a high degree of non-linearity of the model, it is not always obvious

which of the two forecasts is to be preferred.

The optimal predictor depends on the specific loss function of the forecaster. Hall [1986]

shows that for a quadratic loss function, the optimal predictor is the mean of the

distribution of the forecasted variable. If the loss function involves the sum of the absolute

values of the forecast errors, the optimal predictor is the median. Finally, if the loss

function punishes deviations from the most probable realisation, the optimal predictor is

the mode.

                                               

5 The fact that deterministic simulations - contrary to the stochastic ones - produce biased forecasts in non-

linear models was already pointed out by Howrey and Keleijan [1971]. The problem is also discussed by

Brown and Mariano [1989a, 1989b], Mariano and Brown [1983] and Hall [1985a, 1985b, 1986].
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If g(•) is a bijective function (a one-to-one transformation), the deterministic solution is

equal to the median value of the dependent variables6. In cases where the model produces

peculiar distributions of stochastic forecasts, the deterministic forecast may be preferred as

a more robust predictor.

4. PURPOSE OF EXPERIMENTS

Stochastic simulation results were here analysed with respect to three questions. The first

one refers to the difference between the mean stochastic forecast and the deterministic

forecast (the latter assuming that all disturbances are equal to zero).

As already mentioned, a large difference between the two forecasts indicates a relatively

large degree of non-linearity in the model, implying that it may be wise at least to consider

the stochastic forecast as an alternative to the deterministic one. In the case when the

model does not constitute a bijective transformation, the deterministic forecast is a biased

predictor of the mean and has no direct interpretation in terms of the forecast distribution.

The decision on which approach to choose depends on the (implicit) loss function, the

shape of the forecast distribution and - no doubt - on practical considerations.

The second question addressed referred to the standard deviation of the stochastic

forecast. This is a measure of the expected error of a single stochastic forecast. More

interestingly, it also shows the dispersion of the stochastic forecasts around their mean. A

large dispersion indicates that the model is vulnerable to shocks, which in such a case are -

at least temporarily - reinforced by the model.

In principle, it is possible that finite moments do not exist in small-sample distributions of

the structural or reduced-form coefficients of the model7. The problem was discussed on

                                               

6 Cf. Hall[1986].

7 We are indebted to Giorgio Calzolari for a valuable discussion on this point.
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theoretical grounds by McCarthy [1972] and Mariano [1982]. Its practical relevance was

investigated by Bianchi and Calzolari [1982, 1983]. In Monte Carlo studies, non-existence

of moments can result in outliers and non-convergence of the mean squared forecast errors

when the number of replications is increased. Bianchi and Calzolari showed that “ the

problem of outliers, and the consequent non-convergence of the procedure as the number

of replications increase, is not just theoretically possible, but may be encountered in

practical applications on real world models (… )”8.

The last question considered the shape of the distribution of the stochastic forecast. This

distribution provides important information about the statistical characteristics of the

forecast error. In a non-linear model, normally distributed disturbances can produce a

skewed forecast distribution9 (in which, in general, the mean differs from the median). In

such cases, an inspection of the distribution gives an idea about the location of the

deterministic and stochastic forecasts in relation to the mode.

5. EXPERIMENTAL DESIGN

In our experiments, random shocks were generated from a standard normal distribution,

approximated by the sum of twelve uniformly distributed variables drawn from the interval

[0, 1]. The resultant variable has variance equal to 1 and was corrected to have zero mean.

The pseudo-random number generator of the computer package AREMOS was employed.

The software employed, written in AREMOS, allows complete flexibility regarding the

simulated model, the equations shocked and the variables monitored.

Fourteen most important equations of KOSMOS (see below for a brief description of the

model) were subjected to random shocks. These were the equations for: total fixed

                                               

8 Bianchi and Calzolari [1987], p. 219.

9 Bianchi, Calzolari and Corsi [1979, 1981b] report only marginal non-linearity effects in the models they

have studied.
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investment, investment in machinery, demand for labour (all three for industry and other

business, respectively), wage inflation (for industry, other business, central government

and local government, respectively), exports of manufactures, exports of services, imports

and private consumption.

In each experiment, 800 replications were made (400 replications when only one equation

was subject to shocks). In each replication, the whole model was solved for 13 semi-annual

periods starting in 1995:1. Random shocks were drawn for each period of the simulation.

Simulation results were computed for twenty variables in the form of the mean and the

standard deviation of the stochastic forecast. The variables involved were: GDP, private

consumption, total exports, total imports, total fixed investment (all five in current and

constant prices respectively), labour supply, employment, real value added (in industry and

other business, respectively), capacity utilisation in industry, consumer price level, wage

rate in industry, effective exchange rate, short and long interest rates.

In each experiment, the distribution of stochastic forecasts for the variables under study

was assessed. This was done in an approximative manner, in order to avoid amassing

excessive amounts of information. The averages and standard errors of stochastic forecasts

were approximated for each solution period, and each variable, using the first 200

replications. Empirical frequency distributions around those means were subsequently

constructed for the remaining replications. Each distribution is divided into 40 intervals

altogether covering 4 (estimated) standard deviations.

While our initial experiments indicated that relatively reliable results could be obtained for

the mean forecasts and their standard deviations with less than 1000 replications, hundred

times larger samples were needed to obtain smooth forecast distributions. The distributions

analysed below are based on 190 000 replications.

Two types of experiments were performed. In the first one, stochastic shocks were

included additively in the equations, implying non-zero disturbances. In each equation, the
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disturbance had zero mean and standard deviation equal to the residual standard error of

the equation in question.

In the second type of experiment, besides the random disturbance, random shocks were

added to all estimated coefficients, with the exception of the intercept and dummy

variables. The variance-covariance matrix for coefficient shocks in one equation was equal

to the original variance-covariance matrix for the coefficient estimators in this equation. In

this way, sample correlation between estimators of structural parameters was preserved.

Technically, this was achieved by multiplying the shock series by the ”square root” of the

variance-covariance matrix, obtained using the Choleski transformation.

In cases of equations estimated using the Engle-Granger two-stage procedure, the long-run

relations were not subjected to random shocks. This approach was chosen since - while the

long-run relation constituted part of the short-run one - no common variance-covariance

matrix for these two equations was available.

The two types of experiments highlight different aspects of model behaviour. In the first

one, the disturbance is the only source of uncertainty. In the second one, uncertainty about

the exact parameter values is also considered.

An important question in the experiments of the second type, was what to do with those

shocks to the coefficient estimates that led to non-convergent solutions. On quite numerous

occasions, random shocks to the equation coefficients resulted in a non-convergent model

from which no forecasts could be computed. Those cases can reflect the fact that the

standard deviations of the coefficients, routinely computed during the estimation process,

in many instances exaggerate the uncertainty connected with the estimates. In reality, the

estimation process included a judgmental part whereupon coefficient values within given

intervals were prescribed. Consequently, some coefficient values within the standard 95%

confidence interval would never be accepted. This aspect of the estimation process is not

reflected in the standard errors of the coefficients, which in many cases are unduly large.
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Since it was hardly possible to find an acceptable rule for adjustment of the standard errors

of coeffients, no adjustment was undertaken and the shocks that led to non-convergent

solutions were discarded. The replication count refers only to the convergent solutions.

Thus, the distribution of the random shocks to coefficient estimates most probably was

effectively trimmed, since we were not able to decide on the correct variance of the

distribution.

6. KOSMOS: A GENERAL DESCRIPTION

KOSMOS is a semi-annual econometric model developed at the National Institute of

Economic Research in Stockholm. It includes some 500 equations describing six basic

sectors: industry, other business, households, central government, local government and

the foreign sector. Most of the model equations are identities referring to either technical

relations (e.g. aggregate prices as weighted averages of their component price indices) or

institutional rules (e.g. computation of different tax revenues and social transfer benefits).

Identities describing details of the taxation and transfer systems, and thus building up the

government budget balance and household disposable income, constitute nearly half of the

model equations.

Private consumption, fixed investment, foreign trade in goods and services, demand for

labour, supply of labour, wage rates, export prices and domestic market prices are

determined by estimated behavioural equations. There are more than thirty behavioural

relations in the model.

Aggregate demand in KOSMOS is distributed between industry and other business via an

input-output matrix. Industrial output is determined through a supply function, which

defines the capacity utilisation rate. Inventory investments constitute the buffer, which

makes up for differences between demand and supply. Output in other business is demand

determined.
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Capacity constraints are introduced into the model through labour force participation and

wage formation. An increase in the demand for labour affects labour force participation

and unemployment and results in wage inflation. Domestic market prices, determined

mainly by costs, follow suit.

The model is non-linear and includes both logarithmic relations and products of the levels

of the variables.

7. RANDOM DISTURBANCES

In the first experiment, random disturbances were added to the behavioural equations of

the model. Each disturbance was normally distributed with zero mean and standard

deviation equal to the equation’s residual standard error.

The results of the simulation are summarised in Table 1. The first three columns in the

table show the deterministic forecast bias, i.e. the difference between the mean stochastic

forecast and the deterministic forecast expressed as a percentage of the latter. The last three

columns show the coefficient of variation of the stochastic forecast, i.e. the estimated

forecast standard deviation expressed as a percentage of the mean forecast. Each statistic is

shown for the first, middle and last periods of the overall solution period.

As can be seen from the table, the deterministic forecast bias, i.e. the difference between

the deterministic and mean stochastic forecasts is very small. This indicates that in the

present version of KOSMOS, the deterministic forecast is a good mean value predictor. We

may also draw the conclusion that the special type of non-linearity whereby errors are

squared (or multiplied by each other) is not prevalent in the model. Error accumulation,

which results in a larger bias at the end of the simulation period than in the beginning of it,

is practically inconsequential, possibly with the exception of fixed investment and the long

interest rate.
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The coefficients of variation, i.e. forecast standard deviations expressed as a percentage of

mean stochastic forecast are also rather small. On impact, random disturbances affect most

variables by less than one percentage point, notable exceptions being fixed investment,

exports, the wage rate and interest rates, where the effect is close to 2%. As already

pointed out, these numbers describe the average relative forecast error due to factors not

accounted for in the equation. On one hand, one could thus say that a 1.06 percentage

points error in the semi-annual forecast for real private consumption expenditure (cf. Table

1) is rather large, on the other hand - as can be seen in the table - this error is almost

completely averaged out by the use of deterministic forecast.

Error accumulation is in this case apparent, though quite moderate. The relative error

standard deviation triples in many cases, with the largest increases observed for fixed

investment and the interest rates.

Upon this brief survey, it is clear that fixed investment, exports and the wage rate deserve

further investigation. Some attention could also be given to private consumption, which

though not showing excessive errors, is the largest component of GDP. As for the interest

rates, errors expressed in relative terms are in this case misleading. In 1998:1 (the mid-

period of the simulation) the simulated long and short rate levels were 6.8% and 4.6%,

respectively. This means that a 5% relative error (coefficient of variation in Table 1) refers

to the inconsequential 0.3 and 0.2 errors in the level of the respective interest rate.

Table 2 shows summary results of a stochastic simulation with random disturbances

introduced only into the two equations for fixed investment in industry and in other

business, respectively. This time, the number of replication was limited to 400. As can be

seen upon comparison of Tables 1 and 2, the investment equations give rise to a relative

forecast standard error in (i.e. coefficient of variation for) real GDP which amounts to

almost one third of the corresponding standard error caused by all the fourteen equations.

Investments also strongly affect error variances for employment, real value added and

imports. Finally, the disturbances in the investment equations themselves seem to explain
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Table 1. Summary results for stochastic simulations with additive random disturbances
added to all fourteen equations (800 replications)

        Variable Name                 Percentage bias                   Coeff. of variation, %

95:1 98:1 2001:1 95:1 98:1 2001:1

Real GDP -0.008 -0.06 -0.06 0.60 1.36 1.66

Nominal GDP -0.003 -0.007 -0.05 0.78 1.79 2.01

Real private consumption -0.05  0.0004 -0.04 1.06 1.43 1.50

Nom. Private consumption -0.04 -0.04 -0.05 1.13 1.74 1.85

Consumer prices  0.01  0.03 -0.01 0.42 0.79 0.88

Real fixed investment  0.07  0.05 -0.39 2.17 5.49 6.96

Nominal fixed investment  0.08  0.07 -0.42 2.27 5.65 7.15

Real exports  0.02 -0.05  0.06 1.57 2.44 2.49

Nominal exports  0.02 -0.08  0.06 1.58 2.82 2.86

Real imports  0.02  0.04 -0.02 0.93 2.17 2.50

Nominal imports  0.01 -0.01 -0.03 0.92 2.57 2.93

Employment  0.03 -0.08 -0.09 0.58 1.43 1.78

Labour force  0.02 -0.04 -0.03 0.34 0.73 0.89

Wage rate in industry  0.008 -0.03 -0.05 2.19 2.76 2.91

Long interest rate  0.03 -0.02  0.43 1.68 8.32 9.86

Short interest rate  0.05  0.40 0.10 2.00 7.45 8.60

Effective exchange rate -0.01 -0.09 -0.05 0.40 1.19 1.31

Real value added in ind. -0.01 -0.17 0.12 1.07 2.53 2.94

Real value added in other
business

 0.002 -0.04 0.05 0.76 1.67 2.07

Capacity utilisation in ind. -0.03 -0.02 0.08 0.94 1.71 1.95

Note:       Percentage bias = (mean stochastic forecast)/(deterministic forecast),
               Coefficient of variation = (stochastic forecast standard deviation)/(mean stochastic forecast).
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the major part of the investment equations’ forecast error (cf. the coefficients of variations

for real fixed investment in Tables 1 and 2). However, it should be borne in mind that the

influence of the remaining twelve equations cannot be computed by subtraction of errors in

Table 2 from those in Table 1, since the model is not linear.

While the variables affected reflect the structure of the model (and of the modelled

economy), we can conclude that errors in investment forecast appear to be a major source

of error in the model. These errors amount to approximately one third of the error in the

real GDP forecast (the share of investment in GDP in the simulation being below 20%) and

almost half of the error in real imports and real value added in other business. It is

important to point out that the above statement does not refer to the actual forecast errors

of the model but only to error propagation in the model. It thus implies that uncertainty

about investments created by the investment equations is likely to create excessive

uncertainty about other aggregates.

As for the consumption equation (cf. Table 3), it affects real GDP, imports and real value

added (in particular in other business) . Besides its direct effect on real GDP (of which it is

by far the largest component) its effect on forecast errors is rather limited. The two

equations for exports of manufactures (to 14 OECD countries) and of services,

respectively, exhibit similar effects, though of a larger magnitude (cf. Table 4). One

difference is that - in contrast to the case of consumption - value added in industry is

affected much more than in other business, another difference is that the effect on

employment is more pronounced. Disturbances to the wage rate equations (cf. Table 5)

affect slightly - as could be expected - consumer prices but have no pronounced effects

otherwise.
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Table 2. Summary results for stochastic simulations with additive random disturbance
added to the investment equations (400 replications)

        Variable Name                 Percentage bias                   Coeff. of variation, %

95:1 98:1 2001:1 95:1 98:1 2001:1

Real GDP -0,00 -0,02 0,01 0,21 0,39 0,60

Nominal GDP -0,00 -0,03 -0,02 0,21 0,53 0,72

Real private consumption -0,00 -0,00 0,01 0,02 0,04 0,12

Nom. Private consumption -0,00 -0,01 -0,01 0,04 0,20 0,32

Consumer prices -0,00 -0,01 -0,02 0,03 0,19 0,24

Real fixed investment -0,02 -0,20 -0,00 2,22 3,78 5,04

Nominal fixed investment -0,02 -0,21 -0,01 2,28 3,96 5,29

Real exports 0,00 0,00 0,02 0,00 0,11 0,24

Nominal exports -0,00 -0,01 -0,01 0,02 0,13 0,27

Real imports -0,00 -0,05 0,01 0,36 0,83 1,20

Nominal imports -0,00 -0,05 0,00 0,36 0,86 1,26

Employment -0,00 -0,02 -0,01 0,12 0,41 0,62

Labour force -0,00 -0,01 -0,00 0,07 0,21 0,35

Wage rate in industry -0,00 -0,01 -0,04 0,01 0,28 0,39

Long interest rate -0,00 -0,16 0,04 0,26 2,55 4,11

Short interest rate -0,00 -0,08 0,11 0,12 1,85 2,56

Effective exchange rate 0,00 -0,01 0,00 0,02 0,13 0,20

Real value added in ind. -0,00 -0,01 0,01 0,17 0,33 0,53

Real value added in other
business

-0,01 -0,04 0,01 0,35 0,65 0,96

Capacity utilisation in ind. -0,00 -0,01 -0,01 0,09 0,24 0,31

Note:       Percentage bias = (mean stochastic forecast)/(deterministic forecast),
               Coefficient of variation = (stochastic forecast standard deviation)/(mean stochastic forecast).
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Table 3. Summary results for stochastic simulations with additive random disturbance
added to the private consumption equation (400 replications)

        Variable Name                 Percentage bias                   Coeff. of variation, %

95:1 98:1 2001:1 95:1 98:1 2001:1

Real GDP 0,02 0,04 -0,03 0,36 0,56 0,57

Nominal GDP 0,02 0,05 -0,01 0,36 0,66 0,72

Real private consumption 0,06 0,12 -0,08 1,02 1,39 1,38

Nom. Private consumption 0,06 0,12 -0,06 0,99 1,43 1,45

Consumer prices -0,00 0,00 0,02 0,02 0,13 0,23

Real fixed investment 0,00 0,03 0,06 0,00 1,18 1,47

Nominal fixed investment 0,00 0,04 0,08 0,01 1,33 1,70

Real exports 0,00 0,00 -0,01 0,00 0,06 0,21

Nominal exports 0,00 0,01 -0,00 0,04 0,18 0,22

Real imports 0,03 0,05 -0,03 0,46 0,79 0,82

Nominal imports 0,03 0,06 -0,03 0,49 0,91 0,93

Employment 0,01 0,02 -0,01 0,13 0,43 0,46

Labour force 0,00 0,01 -0,01 0,08 0,22 0,24

Wage rate in industry -0,00 0,01 0,03 0,01 0,21 0,40

Long interest rate 0,01 0,12 -0,03 0,17 2,61 2,77

Short interest rate -0,01 0,02 0,20 0,11 1,40 2,58

Effective exchange rate 0,00 0,01 -0,01 0,08 0,19 0,20

Real value added in ind. 0,01 0,01 -0,03 0,10 0,32 0,33

Real value added in other
business

0,03 0,06 -0,04 0,46 0,73 0,74

Capacity utilisation in ind. 0,00 0,00 -0,02 0,07 0,19 0,22

Note:       Percentage bias = (mean stochastic forecast)/(deterministic forecast),
               Coefficient of variation = (stochastic forecast standard deviation)/(mean stochastic forecast).
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Table 4. Summary results for stochastic simulations with additive random disturbance
added to the exports equations (400 replications)

        Variable Name                 Percentage bias                   Coeff. of variation, %

95:1 98:1 2001:1 95:1 98:1 2001:1

Real GDP 0,06 0,04 0,04 0,45 0,90 0,97

Nominal GDP 0,06¤ 0,07 0,04 0,47 1,26 1,35

Real private consumption 0,01 0,01 0,01 0,05 0,17 0,23

Nom. Private consumption 0,00 0,02 -0,00 0,02 0,48 0,60

Consumer prices -0,00 0,01 -0,01 0,03 0,34 0,40

Real fixed investment 0,00 0,03 -0,05 0,00 1,73 1,93

Nominal fixed investment -0,01 0,05 -0,06 0,04 2,03 2,21

Real exports 0,22 0,15 0,10 1,67 2,33 2,45

Nominal exports 0,22 0,19 0,12 1,68 2,67 2,72

Real imports 0,06 0,07 0,14 0,49 1,63 1,67

Nominal imports 0,05 0,08 0,14 0,45 1,75 1,69

Employment 0,03 0,03 -0,01 0,22 0,84 0,89

Labour force 0,02 0,02 -0,00 0,13 0,44 0,47

Wage rate in industry -0,00 0,03 -0,02 0,02 0,79 0,90

Long interest rate 0,06 0,37 0,26 0,44 6,55 7,42

Short interest rate -0,02 0,13 -0,22 0,16 3,02 3,57

Effective exchange rate -0,01 0,01 0,01 0,07 0,34 0,35

Real value added in ind. 0,11 0,08 0,13 0,94 2,00 2,01

Real value added in other
business

0,07 0,05 0,01 0,58 0,99 1,10

Capacity utilisation in ind. 0,07 0,02 0,11 0,65 1,17 1,30

Note:       Percentage bias = (mean stochastic forecast)/(deterministic forecast),
               Coefficient of variation = (stochastic forecast standard deviation)/(mean stochastic forecast).
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Table 5. Summary results for stochastic simulations with additive random disturbance
added to the wage rate equations (400 replications)

        Variable Name                 Percentage bias                   Coeff. of variation, %

95:1 98:1 2001:1 95:1 98:1 2001:1

Real GDP -0,00 -0,03 -0,01 0,13 0,61 0,85

Nominal GDP 0,01 0,05 0,02 0,47 0,72 0,84

Real private consumption 0,00 0,03 0,03 0,11 0,25 0,31

Nom. Private consumption 0,01 0,03 0,05 0,46 0,78 0,79

Consumer prices 0,01 0,01 0,02 0,38 0,61 0,61

Real fixed investment 0,00 -0,27 -0,14 0,00 3,16 4,23

Nominal fixed investment 0,01 -0,27 -0,13 0,35 2,99 4,10

Real exports -0,00 -0,06 -0,04 0,04 0,72 0,91

Nominal exports -0,01 0,00 0,01 0,25 0,93 1,05

Real imports 0,01 -0,02 -0,04 0,15 0,74 1,00

Nominal imports -0,01 -0,01 -0,01 0,25 1,36 1,60

Employment -0,00 -0,05 -0,02 0,05 0,74 1,04

Labour force -0,00 -0,01 0,01 0,03 0,31 0,39

Wage rate in industry -0,05 0,27 0,01 2,14 2,55 2,64

Long interest rate 0,05 -0,11 0,05 1,46 2,98 3,90

Short interest rate 0,06 0,07 0,18 1,84 5,80 6,14

Effective exchange rate -0,02 0,04 0,02 0,36 1,00 1,06

Real value added in ind. 0,00 -0,06 -0,02 0,36 1,05 1,35

Real value added in other
business

-0,00 -0,04 -0,02 0,13 0,80 1,12

Capacity utilisation in ind. -0,00 0,02 0,02 0,24 0,48 0,47

Note:       Percentage bias = (mean stochastic forecast)/(deterministic forecast),
               Coefficient of variation = (stochastic forecast standard deviation)/(mean stochastic forecast).
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8. RANDOM DISTURBANCES AND RANDOM SHOCKS TO EQUATION COEFFICIENTS

In the second experiment, in addition to the random disturbances, random shocks were

added to the coefficients of the behavioural equations of the model. Coefficient

disturbances were normally distributed with zero mean and variances and covariances

equal to those in the equation’s variance-covariance matrix.

This experiment investigates the effects of uncertainty connected with coefficient

estimates. In a way, this is the maximum uncertainty connected with the equations, since

all the error sources are introduced at the same time. (The equation form and the values of

exogenous variables are here taken as given.) Thus, all the coefficients, with the exception

of intercepts and dummy variables, are subjected to disturbance shocks at the same time.

The results of the simulation are summarised in Table 6. As can be seen in the table, the

deviations of the deterministic forecasts from the mean stochastic forecasts are in this case

much larger than in the previous experiment. This is obviously so, since most equation

coefficients are subject to random shocks. The largest deviations are noted for exports,

employment, real value added in other business, and GDP. Since exports of services affect

the three latter variables (and exports of manufactures do not affect other business), it

appears that the equation for exports of services is the cause of this bias. Moreover, this

equation exhibits low accuracy of coefficient estimates and thus the random disturbances

to its coefficients are probably very large (as they depend on the coefficients’ standard

deviations).

Error accumulation is quite apparent here. We may note the peculiar fact that in some cases

the percentage bias decreases towards the end of the simulation period.

The coefficients of variation in this case express the (relative) dispersion of forecast errors

due to uncertainty about coefficient values and also to random equation disturbances. In

the majority of cases, the first-period coefficients are of the order of magnitude of 2%. This

is not bad, especially in view of the fact that specification of the equations in KOSMOS was
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guided more by theoretical considerations than by statistical significance, in some cases

resulting in poor t-values.

Error accumulation is substantial, resulting in the coefficient of variation of approximately

7% for real GDP in the last period of the simulation. This can hardly be considered to be

excessive in the present context and compares well with our experience of other models.

Relatively large coefficients of variation are observed for fixed investment, exports and

real value added in industry. As already mentioned, this reflects the poor estimation

accuracy in the equations for fixed investment and exports of services.

Finally, we can note the peculiar phenomenon of a decreasing coefficient of variation

towards the end of the simulation period for fixed investment and the long interest rate.

This results in narrowing confidence bands for these variables.

It should be reiterated that the standard deviations of the coefficient estimators - employed

in the sampling process - probably overestimate the uncertainty connected with the

estimates, since they do not account for the judgmental part of the estimation process (cf.

Section 5 above). Consequently, the sampling results give an exaggerated picture of the

uncertainty effects and, as such, are more indicative of our problems with measuring

uncertainty than of anything else.

9. SAMPLING DISTRIBUTIONS OF FORECASTS

As already mentioned, computation of relatively smooth sampling distributions required

far more replications than our earlier experiments. In fact, in some instances up to 190000

replications were made. The technical details of the computations were briefly outlined in

Section 5 above.
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Table 6. Summary results for stochastic simulations with additive random disturbance and
shocks to equation parameters in fourteen equations (800 replications)

        Variable Name                 Percentage bias                   Coeff. of variation, %

95:1 98:1 2001:1 95:1 98:1 2001:1

Real GDP -2.09 -3.67 -3.50 2.11   6.53   7.28

Nominal GDP -2.22 -5.14 -4.57 2.27   9.37 12.17

Real private consumption -0.33 -1.68 -2.69 1.85   5.21   7.64

Nom. Private consumption -0.26 -2.79 -3.64 1.93   6.30   9.84

Consumer prices  0.08 -1.16 -1.05 0.68   2.68   4.52

Real fixed investment -0.59 -7.72 -3.90 8.66 41.91 37.20

Nominal fixed investment -0.45 -7.79 -3.50 8.92 44.82 41.56

Real exports -5.27 -4.46 -2.52 5.47   9.24 10.70

Nominal exports -5.13 -5.05 -2.32 5.36 11.10 12.38

Real imports -0.20 -1.09  1.53 2.27 11.14 12.47

Nominal imports  0.13  0.25  3.45 2.27 11.82 12.72

Employment -1.46 -5.33 -5.36 2.21   7.26   7.98

Labour force  0.86 -2.52 -1.74 1.29   3.48   3.32

Wage rate in industry  0.05 -1.24 -0.61 2.30   5.68   9.45

Long interest rate -2.19 -11.91 -3.65 3.30 30.62 26.04

Short interest rate  0.35 -8.69 -6.27 3.25 27.56 46.47

Effective exchange rate  0.47  1.58  2.39 0.77   3.01   3.93

Real value added in ind. -0.66 -1.18 -0.06 1.87   8.67 10.53

Real value added in other
business

-3.92 -6.64 -6.50 3.84 10.55 12.00

Capacity utilisation in ind. -0.41 -0.58  0.48 1.80   4.36   4.29

Note:       Percentage bias = (mean stochastic forecast)/(deterministic forecast),
               Coefficient of variation = (stochastic forecast standard deviation)/(mean stochastic forecast).
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In general, the sampling distributions of the forecasts for individual variables are not

symmetric10. However, in the first experiment (where non-zero random disturbances were

added) on visual inspection they appear to be quite close to symmetry and normality.

One of the most asymmetric distributions is illustrated in Chart 1, which shows the

sampling distribution for the consumer price index (more exactly: the implicit deflator for

private consumption) based on 50000 replications. Each curve in the chart represents the

sampling distribution for one period in time. The chart is drawn in two rather than three

dimensions (simulation periods constituting the original third dimension) in order to

facilitate comparison of the shapes of the curves. In order to make a comparison possible,

all the distributions are standardised so as to have zero mean and unit variance.

While the picture is obviously too blurred for a thorough analysis of any singular curve, the

more or less bell-like shape of the distributions comes out clearly. The three top curves are

those for the first three simulation periods, the distributions become somewhat less peaked

afterwards.

Once we conclude that some forecast sampling distributions are not symmetric, the

question arises as to how the deterministic forecast should be interpreted. In particular, it is

interesting to know how the deterministic forecast is related to the standard measures of the

central tendency of the distribution, or - in other words - what it tells us about this

distribution.

Hall [1986] shows that for a special class of non-linear models the deterministic forecast is

equal to the median11 of the sample distribution of the stochastic forecasts. He also points

out that for this class of models - which he calls bijective - antithetic shocks drawn from a

                                               

10  As indicated by the Jarque-Bera test.

11 Hall[1986] introduces also a definition of the median of a joint distribution.
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Chart 1. Sampling distributions for the consumer price index for the thirteen periods of the
first experiment.
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symmetric distribution will give exactly 50% of stochastic forecasts below the median

forecast. We investigated this in our experiments by computing, for a number of specific

variables, the share of stochastic forecasts that were lower than the deterministic forecast.

According to our results, which are illustrated in Table 7, in the first experiment this share

varies, but in the majority of cases it differs from 50% by not more than 0.5-1.5 percentage

points. Thus, though the deterministic forecast is not equal to the median of the sample

distribution, in most cases it is quite close to it. The largest deviation exhibits the above

mentioned consumer price index, which has 55.05% of forecasts below the median in 95:1.
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 Table 7. Percentage share of stochastic forecasts that were lower than the deterministic
              forecast in the first experiment (15000 replications)

 Variable name   95:1  98:1  2001:1

 Real GDP   51.80  50.89  50.09

 Nominal GDP   51.70  50.40  50.15

 Real private consumption   51.31  51.92  51.42

 Nom. Private consumption   51.29  51.29  51.31

 Consumer prices   55.05  51.66  51.25

 Real fixed investment   50.82  50.08  50.09

 Real exports   51.20  50.89  50.88

 Real imports   51.09  50.85  50.27

 Employment   52.50  50.81  49.97

 Wage rate in industry   51.09  50.93  50.85

 Short interest rate   51.20  50.30  50.29

 Effective exchange rate   54.32  52.07  51.38

 Real value added in ind.   51.60  50.96  49.67

 Real value added in other business   50.55  50.58  49.98

 Capacity utilisation in ind.   51.35  51.96  50.07
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Chart 2. Sampling distributions for the consumer price index for the thirteen periods of the

second experiment. Three-dimensional chart.
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In the second experiment, with both non-zero disturbances and shocks to the coefficient

estimates, some sampling distributions were, again, relatively symmetric and bell-shaped.

However, in other instances the distributions changed over time, showing increasing

skewness towards the end of the simulation period. This is illustrated in Chart 2, which

shows sampling distributions for the consumer price index in the second experiment. The

chart is analogous to Chart 1 but depicted in three dimensions to show the time sequence in
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the development of the sampling distributions. Chart 3 shows the same data in two

dimensions to facilitate comparison of the shape of the distributions. As can be seen, the

distributions for the last periods are clearly more skewed than those in the beginning of the

simulation period.

In this experiment, the share of the stochastic forecasts that were lower than the

deterministic forecast varies from 16.43% for real GDP to 75.72% for the effective

exchange rate in 95:1. As can be seen from Table 8, imports and the industrial wage rate

exhibit relatively symmetric distributions. In many cases, however, the share in question is

persistently lower than 40%, indicating sampling distributions that are skewed to the right.

It is interesting to note that real fixed investment, singled out as the most probable main

source of error in the first experiment (cf. Section 7), does not show any extreme

asymmetry in its sampling distribution. The same is true of the industrial wage rate, but not

of real exports, the two other sources of forecast bias.

The skewed sampling distributions may be due to the simultaneous nature of the model

itself. In the second experiment, endogenous variables are affected by both error term

shocks and shocks to the regression coefficients. When found on the right-hand sides of

model equations, endogenous variables are multiplied by regression coefficients that also

are subject to random shocks. The resultant sampling distribution of the product of random

variables remains to be investigated, but it certainly can be asymmetric. This asymmetry is

possibly exacerbated by large shock variances, due to the overestimated standard errors of

coefficient estimates, discussed in the previous section.

10. SUMMARY AND CONCLUSION

The stochastic properties of the econometric model KOSMOS were investigated in two

experiments, both involving a large number of replications. In the first one, the additive

error terms in fourteen behavioural equations were subjected to random (normal) shocks.

In the second experiment, random shocks were added to the error terms and to all the

coefficients (except the intercept and dummy variables) in the same fourteen equations.
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Chart 3. Sampling distributions for the consumer price index for the thirteen periods of the
second experiment. Two-dimensional chart.
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 Table 8. Percentage share of stochastic forecasts that were lower than the deterministic
              forecast in the second experiment (15000 replications)

 Variable name   95:1  98:1  2001:1

 Real GDP   16.43  28.89  28.25

 Nominal GDP   17.72  28.35  31.04

 Real private consumption   42.74  40.60  40.92

 Nom. private consumption   45.32  35.66  35.23

 Consumer prices   56.49  32.00  34.80

 Real fixed investment   48.01  36.09  33.83

 Real exports   16.54  26.90  35.33

 Real imports   44.70  42.64  50.48

 Employment   23.84  25.88  29.00

 Wage rate in industry   53.27  39.42  41.67

 Short interest rate   24.48  32.00  40.70

 Effective exchange rate   75.72  70.46  76.04

 Real value added in ind.   32.54  45.11  49.62

 Real value added in other business   15.14  23.95  23.42

 Capacity utilisation in ind.   39.41  50.70  55.53
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In the first experiment, the relative bias (i.e. the ratio of the mean stochastic forecast to the

deterministic forecast) and the standard deviation of the stochastic forecasts were very

small. Error accumulation was practically inconsequential. The investigated sampling

distributions of the forecasts were - upon visual inspection - close to symmetry and

normality. The equations for fixed investment and exports of services appeared to be the

largest sources of forecast uncertainty.

In the second experiment, the relative biases and standard deviations were much larger but

(perhaps with the exception of fixed investment) still not excessive as indicators of forecast

uncertainty. There was much more error accumulation and the sampling distributions in

many cases were clearly asymmetric. This asymmetry had been introduced through the

experimental design, since both the endogenous variables (appearing on the right-hand side

of model equations) and their coefficients were subject to random shocks. The results were

based on random shock distributions that (most probably) were effectively trimmed, since

shocks that resulted in non-convergent solutions were replaced by new (random) shocks.

The results of our study indicate that, as long as model coefficients are taken as given

deterministic forecasts with KOSMOS can readily be used to predict the mean values of the

model’s dependent variables. There is little uncertainty connected with random

disturbances and no excessive error accumulation.

When uncertainty connected with the coefficient estimates is also to be allowed for, a more

adequate dispersion measure than the standard error of the coefficient estimate is required.

Short samples and poor data quality often lead to coefficient values being set on other

grounds than pure statistical estimation. Then, standard errors of estimate do not reflect the

actual uncertainty connected with the coefficient values and can easily exaggerate this

uncertainty, affecting the stochastic simulation results.
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STOKASTISKA SIMULERINGAR MED KOSMOS

SVENSK SAMMANFATTNING

De stokastiska egenskaperna hos den ekonometriska modellen KOSMOS har undersökts i två

experiment. Båda involverade ett stort antal replikationer. I det första experimentet

adderades en normal slumpvariabel (som representant för feltermen) till fjorton

beteendeekvationer. I det andra experimentet blev även regressionskoefficienterna (med

undantag för intercept och dummy-variabler) föremål för additiva chocker.

Den genomsnittliga stokastiska prognosen i det första experimentet avvek mycket litet från

den deterministiska prognosen. Den stokastiska prognosens standardavvikelse var liten och

praktisk taget ingen felkumulering kunde observeras. De stokastiska prognosernas

fördelningar såg symmetriska och klockformade ut. Analysen indikerar att ekvationerna

för fasta investeringar och tjänsteexport utgör den största källan till prognososäkerhet.

I det andra experimentet var skillnaderna mellan den genomsnittliga stokastiska prognosen

och den deterministiska prognosen, liksom prognosstandardavvikelserna, mycket större.

De bedömdes dock fortfarande som acceptabla mått på prognososäkerhet. Mycket mer

felkumulering kunde dessutom observeras och vissa prognosfördelningar var klart

asymmetriska. Denna asymmetri berodde på att både endogena variabler och deras

koefficienter (när variabler ifråga förekom i högra ledet) blev föremål för slumpmässiga

chocker.

Enligt våra resultat kan deterministiska prognoser med KOSMOS användas som prediktorer

för de endogena modellvariablernas medelvärden så länge modellekvationerna betraktas

som givna. Vill man dessutom ta hänsyn till osäkerheten förknippad med

koefficientskattningarna, behövs det ett osäkerhetsmått som tar hänsyn till de subjektiva

bedömningar som utgör en del av skattnigsprocessen.


