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1. Introduction

In an econometric model, some equations may, for various reasons, be estimated

using data with a frequency different from that of the main part of the data. These

equations then have to be transformed in order to be consistent with the other

equations.

This was the case in the financial part of the KOSMOS model for Sweden, built by

the National Institute of Economic Research, see Markowski (1996). The real part

of the model was estimated with semi-annual data. However, some financial

variables, such as the rate of exchange, had been more or less constant or severely

constrained for such a long time in the past that only a short period, say a couple of

years, was available for estimation. In order to get more observations, monthly data

were used to estimate the coefficients of, among others, the exchange rate equation.

A similar situation arises in other cases with regime shifts, occurring e.g. when

deregulating a market. An extreme example is the introduction of market economy

in a formerly communist country.

To use the two groups of equations with different data frequencies in a common

model, there is a choice between two strategies. Either the equations using

aggregated (semi-annual) data have to be reestimated with disaggregated (monthly)

data, which often have to be estimated or guessed, or the equations estimated on

disaggregated data have to be transformed to an aggregated form. In the KOSMOS 

model, the second strategy was used. The present note intends to clarify the

problems connected with the transformation of monthly equations into semi-annual

ones that can be used in combination with the rest of the model. We will in several

cases use the monthly exchange rate equation, estimated for KOSMOS, as an
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example. The calculations will be made for an aggregation of six terms. The

generalization to other aggregates is usually self-evident. Some results for two terms

will be mentioned in the Summary. The problem to be taken up in this paper is

slightly different from what is ordinarily discussed in the literature on temporal

aggregation. The situation most frequently treated is one with an equation or a

model specified for fairly short time periods, say months, but estimated with

quarterly or annual data. The problems arising in this situation are only partly the

same as in the present case, but in the following we shall be able to take advantage

of some previous results and experiences.

The starting point for our discussion of time aggregation is that we have specified

and estimated an equation on monthly data. We now want to find an equivalent

equation in terms of semi-annual data, since these are the only ones that are

acceptable in combination with the rest of the model. This situation can be

illustrated by a simple equation with only three explanatory variables:

y a a x a z a ut t t t t= + + + +0 1 2 3 ξ (1)

where t=1,2,...,N  (months)

xt is a flow variable, e.g. GDP

zt is a state variable, measured as an average over the month, e.g. a            

         price

ut is a stock variable, indicating the state on the last day of the month,        

           e.g. an inventory variable

ξt is a random variable, uncorrelated with the previous variables.

To begin with, the dependent variable yt will be assumed to be of the same type as

xt. The corresponding variables in their semi-annual form are written in capitals
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(Y,X,Z,U). The time index for these variables will be T=1,2,...,N/6, where T includes

the six months t=(6T-5),(6T-4),...,6T. We define these variables as 

YT=Σyt  XT=Σxt  Z zT t= ∑1
6

   UT=u6T

 (Here and in the following, the summation sign indicates a sum from (6T-5) to 6T,

unless otherwise stated.)

The basic aim of the aggregation is to find an equation in YT, XT, ZT, and UT that

generates the same development of YT as would be obtained by summing the yt

derived from (1). A general strategy for finding this equation is to apply the same

operator to the right hand side (RHS) of (1) as the one used to transform yt into YT.

This strategy has been used by several authors, in particular Zellner and

Montmarquette (1971), Brewer (1973), and Weiss (1984). As will be evident in the

following, the RHS of the aggregated equation will often contain functions of the

original variables that could not be expressed in terms of aggregated variables, and

thus have to be estimated. We shall later discuss whether in such cases a different

strategy, allowing non-aggregated expressions also in the LHS, may be preferable.

In a static model with a flow variable as the dependent variable, the natural operator

to apply is the simple summation, in our case over six terms. For comparison with

later, more complicated cases, we may express this summation by a polynomial in

B, the backshift operator. We shall here specify two backshift operators. Bt means a

shift of one month, so that Btxt=xt-1. We shall also use BT, which shifts the variable

one half year, so that BTXT=XT-1. This means BT=Bt
6. It should be noted that Bt

causes a shift of only one month, even when operating on XT. The summation can

now be written as

XT =A1(Bt)xt=( )1
1
1

2 3 4 5
6

+ + + + + = −
−

B B B B B x
B
B

xt t t t t t
t

t
t



5

For ut , we have ( )U A B u uT t t t= =2   . Thus, A2(Bt) = 1.

Applying the summation operator A1 to both sides of (1) yields

( ) ( ) ( ) ( ) ( ) ( )A B y A B a a A B x a A B z a A B u A Bt t t t t t t t t t t1 1 0 1 1 2 1 3 1 1= + + + + ξ (2)

We will now investigate each term in (2).

1. For the dependent variable, ( )Y A B yT t t= 1 , and the left hand side of the

equation thus becomes YT.

2. The constant a 0 is replaced by 6a0.

3. For the flow variable xt the expression A1(Bt)xt corresponds exactly to XT, so this

term becomes a1XT.

4. Since for the state variable zt, the corresponding semi-annual ZT is an average of

the monthly variables, this term in (2) becomes 6a2ZT.

5. For ut measured as the end-of-period values, the aggregation causes difficulties.

The sum A1(Bt) ut is different from UT=A2(Bt)ut and contains the values at the

end of each of the six months. These values do not correspond to any

observations on the semi-annual variable. We will meet several similar situations

in the following. In the spirit of Wei (1978) we try to estimate the sum using

available data. We shall discuss this estimation problem in Section 3. For the

time being, we shall use a simple linear interpolation between UT and UT-1 in the

hope that the series ut is smooth enough to allow for such a procedure. Since

UT=u6T and UT-1=u6T-6, we estimate

( )[ ] ( )u i U iU U
i

U UT i T T T T T6 1 1
1
6

6
6− − −≈ − + = − −

and thus for the sum from (6T-5) to 6T, i.e. i=0,1,...,5:

( )u U U U U Ut T T T T T≈ − − = +∑ − −6
15
6

7
2

5
21 1

Thus, the corresponding term in (2) will be specified by

( )a A B u a U Ut t T T3 1 3 16
7

12
5

12
≈ +



−
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6. The residual term in (2) is just the sum of six residuals in (1). If these are equally

and independently distributed, the same is true of the residuals in (2), with a

variance that is six times that in (1). If the original residuals are autocorrelated or

heteroskedastic, the result is more complicated. The residuals are not further

discussed in this paper.

Now, many equations are not as simple as (1). Various complications will be treated

in the following. First, in Section 2, we discuss the case of transformed variables,

notably logarithms. We continue in Section 3 with lagged exogenous variables. In

Section 4, we make the natural extension to first differences. If the dependent

variable is a first difference, we have to use a different transformation for converting

the equation from monthly to semi-annual data. This situation is discussed in Section

5. We next discuss the general problem of lag specification in Section 6. A

completely new situation arises when lagged endogenous variables are present in

the RHS of the equation. This is taken up in Section 7.  The question of which

operator to use for the aggregation is discussed in Section 8. Finally, in Section 9,

we use our results for converting the exchange rate equation into semi-annual form,

and we make some reflections on the outcome.

2. Transformations of the Exogenous Variable

One very common complication when applying the rules listed above is that some

variables are transformed. In econometric modelling it is common that the variable

used is not zt but log zt. In this case, the summation of six terms yields Σlog zt ,

while the semi-annual counterpart is 6 log ZT = 6 log 1/6 Σzt .This is of course

equivalent to using (the log of) the arithmetic mean instead of (the log of) the

geometric mean. Since for variables with only positive values the former is always
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larger than the latter one, the equation is somewhat distorted. For variables with

values in the range (1,2) - such as the Exchange rate - it is possible to get an idea of

the difference between the two expressions by expanding them as Taylor series.

Let v zt t= − 1 . Then

( )log log ...z v v v vt t t t t= + = − + −1
1
2

1
3

2 3

A summation over six terms gives

( )S z v v v vt t t t t1
2 31 6

1
6

1
12

1
18

≡ =∑ + = ∑ − ∑ + ∑ −



∑log log ...     

  while

S Z v v v vT t t t t2

2 3

6 6 1
1
6

6
1
6

1
2

1
6

1
3

1
6

≡ = + ∑



 = ∑ − ∑



 + ∑



 −






log log ...

This gives

( ) ( )1
6

1
2

1
6

1
36

1
2

1
22 1

2 2 2 2S S v vt t v z− = − ∑ +∑





= + = +... ... ...σ σ

Thus, the first term in the difference depends on the variance of zt within each half

year.

We have investigated two variables that enter the KOSMOS exchange rate equation

in log form, and found that the difference between the two expressions is negligible

in comparison with the overall variation of the variables. In fact, the variances of

these variables within each half year are very small, see Table 1.Thus, no great

harm is done by using 6 log ZT instead of Σlog zt .
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Table 1. The difference between log of the average ( )1
6 2S and

average of the logs ( )1
6 1S  for two variables in KOSMOS.

    Period       
1
6 1S              

1
6 2S              ( )1

6 2 1S S−      
σ2

2
                      (half -year)
Exchange 2/93 0.2480 0.2481 0.0001 0.00019
rate 1/94 0.2250 0.2251 0.0001 0.00006

2/94 0.2294 0.2295 0.0001 0.00022

Price 2/93 0.06864 0.06865 0.00001 0.000008
relation 1/94 0.08234 0.08236 0.00002 0.000018

2/94 0.10185 0.10186 0.00001 0.000008

Problems similar to that of logarithmic transformations arise when a variable in the

model is defined as the ratio of two variables, since the mean of monthly ratios is

not the same as the ratio of the means. In this case also, the error of approximation

from using the latter expression instead of the former one is  smaller, the smaller are

the variances of the two variables. We shall meet an example of a ratio variable in

Section 9.

3. Lagged Exogenous Variables

Having found that the logarithmic approximation does not seem to be very harmful,

at least for variables of the type used in the KOSMOS exchange rate equation, we can

move on to the next difficulty: lagged exogenous variables. Again, we formulate a

model containing explanatory variables of the three kinds included in (1), but now

lagged one period:

yt = b0+b1xt-1+b2zt-1+b3ut-1+ξt (3)
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Summing six consecutive observations (applying the operator A1(Bt) to all terms) as

before, we find that now the RHS variables form sums like Σxt stretching from

December to May or from June to November.Thus, the xt sum is

( )S A B x
B
B

B xt t
t

t
t t≡ = −

−−1 1

61
1

(4)

No corresponding semi-annual observations exist. As in the case of the end-of-

period variable ut under point 5 of Section 1, one solution is to estimate the lagged

sums with the help of available data. In the terms used by Tiao and Wei (1976), we

shall find the expected value of the sum, given the sums corresponding to calender

half-years.

In order to make an efficient estimate, it is necessary to formulate and estimate a

model for xt. Compared to the situation covered in most of the literature on temporal

aggregation, we are here at an advantage, since we have monthly observations of

the xt. As the reason for estimating the model equation on monthly data was that a

structural break had made earlier observations irrelevant for the model, there is,

however, a very short period available for identifying and estimating a model for the

exogenous variables. It is obviously dangerous to rely on an assumption that the

estimated model will describe the path of xt also in the future. We shall therefore

have to rely on less efficient but perhaps more robust methods.

We shall use two different approaches. The first is to approximate the series locally

by fitting a polynomial to the semi-annual observations. In fact, due to the short

series, we have deemed it appropriate to use only straight lines connecting two

adjacent observations. This is the linear interpolation that we introduced already in

point 5 of Section 1.
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The second approach is to assume a simple ARMA model for xt. We make explicit

calculations only for AR(1) models with different autocorrelation coefficients γ. In

several cases, it turns out that the result is rather robust for changing γ, and also

rather similar to those obtained by linear interpolation.

When using interpolation, we make no assumption about the data-generating

process for the variable we are treating. In the literature, the most frequently

discussed situation is the following: Given a whole series of quarterly or semi-

annual observations, estimate a corresponding monthly series which is as smooth as

possible according to some criterion, and that adds up to the given quarterly/semi-

annual values. For this approach, see e.g. Boot et al. (1967). For a recent survey of

available methods, see Marcellino (1996).

For our problem set-up, the estimation has to be made successively and not for all

periods simultaneously. This means that future semi-annual observations could not

be used for the estimation. It also seems complicated and probably not very

informative to use observations from a too distant past. We shall therefore use only

the last two or three semi-annual observations.

We will later compute error variances for the interpolation estimates, given certain

assumptions about the data-generating process, but already here we want to point

out the difference in information content of a semi-annual observation of an X or Z

variable (according to the notation above), and a U variable. In the former case, the

monthly value or values we are seeking to estimate are parts of a sum or average

that we observe. In the end-of-period variable case, we want to find the values of

observations between those in the semi-annual series. It is intuitively clear that the

errors will usually be larger in this case.
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Fig. 1. Interest rate difference between Sweden and Germany.

      Moving 6 month average  (curve) and linear interpolation (broken line).
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The problem we encounter when the RHS of the equation contains lagged

exogenous variables is to estimate the sum S in equation (4). Of the six terms in the

sum, five are parts of the observable sum XT, while one is part of XT-1.  Thus, a

simple estimate of S is obtained by a linear interpolation between XT and XT-1 :

x X Xt T T− −∑ ≈ +1 1
5
6

1
6

Since ZT is a mean and not a sum, we get for zt-1

z Z Zt T T− −≈ +



∑ 1 16

5
6

1
6

For ut , the situation is somewhat different, since UT and UT-1 are not sums, but

single values. Thus, the sum Σut-1 contains six terms, one of which is UT-1=u6T-6,

while UT does not enter. If nothing is known about the process that generates ut, an

estimate of the sum is like a shot in the air. However, if the curve is smooth,
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Table 2. The accuracy of interpolation estimates of a lagged average for three
     variables in KOSMOS.

    

    Period           Monthly   Estimate from    M1-M2                      σ
    (half-year)     average    interpolation

         M1          M2

Interest rate 1/94 1.207 1.353  - 0.146 0.762
difference 2/94 2.555 2.453 +0.102

Log (relative 1/94 0.07985 0.08005 -  0.00020 0.0143
prices) 2/94 0.09910 0.09858 +0.00052

Wealth (M3) 1/94 743 700 744 400         -700 14 600
2/94 724 200 741 700  -17 500

we may try a linear interpolation here, too. It turns out to be similar to the one we
used in (2):

 u U Ut T T− −≈ +



∑ 1 16

5
12

7
12

The nature of the x and z approximations can be illustrated by moving sums or

moving averages, see Fig.1. We use a variable that enters the exchange rate

equation (see eq.(19) in Section 9) with a lag of one period, i.e. one month: The

interest rate difference between Sweden and Germany.

The curve shows six months moving averages, and the vertical lines indicate values

that correspond to calender half years. These are the only values that could be used

in the semi-annual model. The straight lines between these points indicate the values

obtained by a linear interpolation. The values corresponding to averages lagged one

period are marked by dots, so the differences between these values and the actual

averages (on the curves) are easily noted. Table 2 gives a more accurate account for

the interest rate difference, for the price relation between Sweden and Europe, and

also for the wealth variable, which is an end-of-period variable. To facilitate an

evaluation of the approximation error, the standard deviation of each variable over

the period July 1993 - Dec. 1994 is also given.
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It seems that for the first variable, the approximation error is not negligible,

amounting to about one sixth of the standard deviation, while for the log of the

relative prices, the error is of little consequence. However, for wealth, the end-of-

period variable, the error is of the same order as the standard deviation. It seems

important to investigate whether an alternative approach could yield a better

estimate, and, in any case, to determine the accuracy of the approximations more

carefully than by examples from two periods. This will be done in the remainder of

this Section.

In order to formulate more accurate estimation methods than linear interpolation, we

have to exploit all information that may be available regarding the generation of the

exogenous variables. If it is known that a variable is generated by an ARMA

process, this information can be used when calculating the expected values of the

desired functions. We shall investigate this situation, starting with the case where

there is only one exogenous variable xt, which appears in the model with a lag:

yt = a1xt-1 + ξt (5)

and xt is known to be generated by an ARMA process. This case has been

extensively treated by Brewer (1973), Tiao and Wei (1976), Weiss (1984), and

others.

As noted above, we have to find the expected value of the sum S in (4), given the

observations of XT-i for various values of i, possibly including negative as well as

positive lags. There is, however, some disagreement among previous authors as to

which values of XT  should be considered as given. Brewer (1973) uses only XT-i

(i=1,2,...) and not XT in order not to introduce simultaneity which could complicate

the estimation of the aggregated equation. Tiao and Wei (1976) note that XT is

usually the term which has the largest correlation with YT, and not taking it into

account means a reduced efficiency in estimating the micro relation. They find that
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neglecting forward terms (i=-1,-2,...) also leads to difficulties in estimation by

making the residuals correlated with the X's. Thus Tiao and Wei use in principle all

available X's, but in practice the terms with long leads or lags get very small

coefficients and can be disregarded.

Tiao and Wei present an example, using the basic model (5) with xt generated by an

AR(1) process with autoregressive coefficient γ. The aggregated equation becomes

YT = a1 L(BT)XT + Θ T

where L(BT) is a polynomial in BT, used for estimating S, and Θ T is the sum of the

residuals ξt. Applied to a summation of six terms and for γ=0.9, their  estimate can

be calculated to be:

L(BT)=-0.005BT
-3+0.023BT

-2-0.093BT
-1+0.940+0.167BT-0.042BT

2+.010BT
3

Thus, the coefficients of the negative lags are not negligible, although the

contemporaneous term and the first positive lag are most important.

Weiss (1984) is disturbed by the fact that the procedure used by Tiao and Wei

destroys the one-way causality that exists in the basic model, and notes that the

estimation problem encountered when neglecting the negative lags (correlation

between residuals and explanatory variables) can be overcome by the use of

instrumental variables. Thus, he takes XT-i (i=0,1,2,...) as the base for computing the

conditional expected value of the "skew" sums.

In our problem set-up, we need not take into account the difficulties in the

estimation of the aggregated relation, since we have already estimated the monthly

relation. Furthermore, a relation containing leads in one or more explanatory

variables would be disturbing in the context of the overall model. Thus, we stick to

the approach favoured by Weiss, and want to find a function L(BT)XT =k0XT + k1XT-1

+ k2XT-2 + ... that is a good estimator of S in (4). The  coefficients ki depend on the
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form of the ARMA model for xt. As has already been pointed out, the observation

period for the KOSMOS financial variables is very short, so it is not possible to have

much confidence in the models that are identified by the use of these obervations. In

most cases, AR(1) models give a reasonably good fit with autocorrelation

coefficients in the range (0.60, 0.95). The coefficients for AR2 or MA1 generally

are not significantly different from 0. Thus, we have deemed it sufficient to make

calculations for the AR(1) model. In this case

(1-γBt)(xt-µ) = εt (6)

where µ is the arithmetic mean of x. The interpolation estimate (p. 4) used only XT

and XT-1. It seems now appropriate to include also XT-2 in the specification of L(BT)

in order to find out if its coefficient is so small that it can be disregarded. Tiao's and

Wei's results indicate that it is not necessary to include any further terms.

To determine L(BT)XT, we express it in terms of xt, thus:

( ) ( )L B X k X k X k X k k B k B
B
B

xT T T T T t t
t

t
t= + + = + + −

−− −0 1 1 2 2 0 1
6

2
12

61
1

This can now be compared with S(Bt)xt , the function of the monthly observations

that we want to estimate. In the present problem, this is

( )S B x
B
B

B xt t
t

t
t t= −

−
1
1

6

and thus the error of estimation, to be denoted F(Bt)xt , is

( )F B x S B x L B X B k k B k B
B
B

xt t t t T T t t t
t

t
t( ) ( ) ( )= − = − − − −

−0 1
6

2
12

61
1

Given (6), we can now determine the ki so as to minimize the variance of F(Bt)xt. In

order to facilitate the comparison with the interpolation estimates, we impose the

restriction that  Σ ki = 1.
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Brewer and Weiss use a slightly different procedure, as they want to express the

estimator as an ARMA process which is as simple as possible. They apply an

operator T(Bt) to both sides of a slightly rearranged equation (6):

T(Bt)(1-γBt)xt = T(1)(1-γ)µ+ T(Bt)ετ                                     (7)

Now,  if T(Bt) is chosen in such a way that

T(Bt)(1-γBt)xt = S(Bt)xt - L(BT)XT ≡F(Bt)xt (8)

we get ( ) ( )( ) ( )F B x T T Bt t t t= − +1 1 γµ ε  

If T(1) is  made=0, then T(Bt)εt is the error of estimation. Since εt is white noise, it is

easy to minimize the error variance.

Applying this method to our present problem, equation (8) becomes

( )( ) ( )T B B x
B
B

B k k B k B xt t t
t

t
t t t t1

1
1

6

0 1
6

2
12− = −

−
− − −γ (9)

Let T(Bt) = q0+q1Bt+q2Bt
2+q3Bt

3+ ..+q16Bt
16

By equating the coefficients of Bt
i for every i in (9), it is possible to determine the

coefficients of T(Bt) as functions of k0, k1, and k2 (and of γ). Since the highest power

of Bt in the RHS of (9) is 17 - when the ratio is expressed as a sum - there are 18

such equations. They determine the qi (i=0,1,...,16). The 18th equation can be used

to get a restriction that k0, k1, and k2  have to satisfy:

γ γ γ11
0

12
1

6
2 0− − − =k k k (10)

Neither Brewer nor Weiss determines the size of the coefficients, but Weiss

indicates that, in addition to restriction (10), he would set k0=1. If instead the same

restriction as above, i.e.  Σ ki=1 , is used, the estimate of the ”skew sum" could be

seen as a weighted average of  XT, XT-1, and XT-2. It also makes the first term of the

RHS of (7) equal to 0, since in that case

( )( ) ( )T k k k1 1 6 1 00 1 2− = − − − =γ (11)

according to (9). By (7), (8), and (11)
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S(Bt)xt = L(BT)XT + T(Bt)εt (12)

Since ε is assumed not to be autocorrelated, the variance of the moving average

T(Bt)εt is minimized if the sum Σqi
2 is as small as possible, subject to (10).

The difference between the Brewer/Weiss procedure and the one described on pp.

14 -15 is the imposition of restriction (10). It turns out that this restriction in certain

cases affects the coefficient estimates in such a way that the error variance is

considerably increased. Since for us it is not necessary to express the estimates in

terms of ARMA processes, we stick to the estimates derived without the restriction

(10). The results for various situations are given in Tables 3-8 in the following. In

each table, the coefficients optimal for various values of γ are given, together with

the error variance, assuming that the variance of εt is 1. For comparison, the simpler

interpolation estimates are also shown in the tables together with their error

variances, given that the xt  follows an AR(1) process. In order to get a dimension-

less measure of the goodness of various estimators, we have also calculated an

equivalent of a determination coefficient R2, to be denoted R*
2 :

R
F B
S B

t

t
∗ = −2 1

var ( )
var ( )
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Table 3. Optimal coefficients in the expression L(BT)XT=(k0XT + k1XT-1 + k2XT-2)
for estimation of S(Bt)=A1(Bt)xt-1 when xt is AR(1)

γ k0 k1 k2 Error
variance

R*
2 Interpolation estimate

Error variance R*
2

0.01 0.835 0.165 -0.001 1.668 0.73 1.668 0.73
0.1 0.852 0.155 -0.007 1.696 0.76 1.700 0.76
0.2 0.867 0.147 -0.014 1.754 0.80 1.769 0.80
0.3 0.879 0.141 -0.020 1.842 0.83 1.876 0.83
0.4 0.881 1.139 -0.027 1.966 0.86 2.027 0.86
0.5 0.894 0.140 -0.034 2.125 0.89 2.224 0.88
0.6 0.896 0.145 -0.041 2.314 0.91 2.467 0.91
0.7 0.892 0.155 -0.047 2.516 0.94 2.736 0.93
0.8 0.883 0.167 -0.050 2.696 0.96 2.994 0.96
0.9 0.867 0.181 -0.048 2.809 0.98 3.153 0.98
0.99 0.849 0.189 -0.038 2.805 1.00 3.084 1.00

inter-
polation

0.833 0.167 -

This is given in every table for the optimal as well as for the interpolation estimates.

The tables are commented upon as the various cases are presented in the following.

For the present problem with a lagged exogenous variable of the flow variable type,

 generated by an AR(1) process, Table 3 shows that whatever the value of γ, the

coefficient for XT-2 is rather small and can in most cases be ignored. The coefficients

approach the interpolation values when γ tends to 0, i.e. when xt becomes white

noise. Even for other γ values, the error variance of the interpolation estimate is at

most 12 per cent higher than the optimal one. In view of the fact that the data

generating process could be assessed only with great uncertainty, it seems legitimate

to use interpolation for the estimate in this case. The R*
2  measure is reasonably high

for low γ values, and tends for both estimates
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Table 4. Optimal coefficients in the expression L(BT)UT=(k0UT + k1UT-1 + k2UT-2)
for estimation of S(Bt)ut=A1(Bt)ut-1 when ut is AR(1)

γ k0 k1 k2 Error
variance

R*
2 Interpolation estimate

Error variance R*
2

0.01 1.670 2.670 1.660 13.348 - 17.481 -
0.1 1.704 2.704 1.593 13.584 - 17.427 -
0.2 1.750 2.750 1.500 14.064 - 17.580 -
0.3 1.809 2.808 1.382 14.762 - 17.910 -
0.4 1.887 2.882 1.230 15.658 - 18.357 -
0.5 1.990 2.974 1.036 16.708 0.11 18.844 -
0.6 2.120 3.082 0.798 17.804 0.32 19.270 0.27
0.7 2.266 3.205 0.530 18.731 0.53 19.512 0.51
0.8 2.400 3.330 0.270 19.162 0.72 19.420 0.71
0.9 2.482 3.442 0.076 18.791 0.88 18.817 0.88
0.99 2.500 3.499 0.001 17.670 0.99 17.670 0.99

inter-
polation

2.5 3.5 -

towards 1 as γ increases. Thus, for this case, estimating the S(Bt)xt expression by the

function L(BT)XT  increases the error by only a small amount.

These results are applicable to exogenous variables that are either flow variables or

state variables, measured as period averages. In the latter case all coefficients have

to be multiplied by 6. For end-of-period variables, the calculations are slightly

different, due to the fact that even the semi-annual variables are measured at the end

of the period. Since we are estimating a sum from individual values, the coefficients

have to sum to 6. Using this condition, and minimizing the error variance, we get the

coefficients shown in Table 4.

In this case, the optimal coefficients get closer to the interpolation ones when γ
increases towards 1. For lower values, the k2 coefficient is not negligible. For very

small γ, the error variance is 30 per cent higher for the interpolation estimate than

for the optimal one, but both are high compared to the variance of the expression to

be estimated. For γ values lower than about 0.5, the error variance is even larger
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than the variance of S(Bt)ut . Calculating R*
2  as above would result in negative

values. This shows that R*
2  is not directly comparable with a coefficient of

determination in an ordinary regression, the reason being that the error is not

uncorrelated with the estimate. The result shows, however, that the information 

contained in the observable UT-i is insufficient to estimate the function A1(Bt)ut 

when the autocorrelation of ut is low. We shall reach similar results in the following

Sections, when other S(Bt)ut are analyzed. In the concluding Section, we shall return

to the problems encountered when using end-of-period variables.

It is interesting to note, that in the case of an unlagged ut exogenous variable that we

met in point 5 of Section 1, but left for later consideration, the results are the same

as in Table 4, except that the  k0 coefficient is for all γ decreased by 1 unit, which is

instead added to k1. The error variances and the conclusions are the same.

4. First Differences of Exogenous Variables

A case which is closely connected with that of lagged variables is when first

differences of exogenous variables are entered into the equation. This case calls for

some additional comments. We shall discuss two different approaches, and then

take up the more general question of the lag length in the model. To begin with, we

shall consider the case of a period-average variable zt.

Our first approach is to let A1(Bt) operate on each of the terms in (zt-zt-1) separately,

yielding

( ) ( )A B z A B z Z St t t t T1 1 1 6− = −− (13)

where S is the "skew sum" used in the previous Section (formula (4)).
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Thus, in (13), the first term is a directly observable magnitude, and the second one

could be treated in the same way as when it appeared alone as a lagged variable

(Section 3). Since it turned out that, for zt following an AR(1) process, the results

obtained from a linear interpolation were close to the optimal estimate, we use this

simpler form. Thus,

( )z z Z Z Z Z Zt t T T T T T− ≈ − +



 = −∑ − − −1 1 16 6

5
6

1
6

For the flow variable xt, the equivalent expression becomes ( )1
6 1X XT T− − , again

an approximation of the same kind as that for zt.

The end-of-period variable ut turns out to be the simplest one in the case of

differences, as

Σ(ut-ut-1) = u6T - u6T-6 ≡ UT - UT-1

which is an exact expression, not an approximation. This explains the relation

between the coefficients in the estimates of Σut, and Σut-1, noted above (p.19).

Taking the difference between these estimates, the result is (UT-UT-1), as it should.

For the xt and zt cases, the errors of approximation are the same as for the lagged

variables (although with changed sign), since the first term of the difference is

reproduced by the aggregated variable without error. The relative errors, of course,

are different from those of the lagged variable, and may sometimes be felt more

disturbing.

It is interesting to note that a different approach to the estimation of differenced

variables leads to identical expressions, but with a different lag. Taking again the

case of zt, the six month sum includes five terms that are eliminated by five

corresponding terms in the sum of zt-1, so that

Σ(zt-zt-1) = z6T - z6T-6
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Neither of the terms of the RHS of this expression can be observed if we have only

semi-annual data, but we may estimate both in a way similar to what was done

above. However, the estimation is probably made more accurate if we lag the

monthly variables by 2½ months so that both terms refer to a period in the middle of

a half-year. Then a natural approximation for each of them is the monthly average of

the semi-annual variable, thus:

          Bt
5/2(Σ(zt - zt-1)) ≈ (ZT  - ZT-1)     or   Σ(zt - zt-1) ≈ Bt

-5/2(ZT - ZT-1)

The lag in the expression may seem disturbing, but at the end of the calculations all

terms of the equation could be shifted backwards or forwards so that a simple

expression is obtained for most of the terms1.

It may, however, be useful to give some thoughts to the fact that we obtained the

same approximation for the sum of first differences, whether lagged by 2½ months

or not lagged at all. In fact, it can be shown that the same result is obtained by the

linear approximation for all lags between 0 and 5 months. This can be understood

by looking at Figure 1. All one-month differences between two consecutive sums

(or, as in the figure, averages) are naturally estimated by a

portion of the straight line connecting ZT and ZT-1, and the one-month differences

along this line are of course the same everywhere.

This equality suggests that the problem may be turned around and formulated as a

question of which sum of one-month differences is best approximated by the semi-

annual difference?

The answer to this question depends upon how the zt series is generated. If it is a

pure random (white noise) series or a random walk, the standard deviation of the

                                                       
1 This approach was suggested by Alek Markowski.
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estimate is the same for all lags between 0 and 5. If, however, zt is a series with

positive autocorrelation, it seems that the standard deviation of the error is smaller

for central differences than for the extreme ones.

This suggests that it could be profitable to lag all terms of the monthly equation by a

suitable amount before summing its terms to semi-annual values. The lag should be

chosen so as to make the necessary approximations as good as possible. For first

differences, the optimal lag may be 2½ months, but that destroys the exact

equivalence of the unlagged terms, so the choice is not obvious.

We shall return to this question in Section 6, together with a general discussion of

the specification of lag length in the model. First it is, however, useful to discuss

what happens when the dependent variable is itself a difference.

5. The Dependent Variable as a First Difference

So far, we have discussed what happens to the RHS of the equation, if we apply the

operator A1(Bt) to all terms in order to transform the monthly dependent variable yt

to the semi-annual variable YT. If, as in the exchange rate equation, the dependent

variable is a monthly difference, we have to find another operator that can transform

(yt-yt-1) into (YT-YT-1).

It was shown by Zellner and Montmarquette (1971) that (YT-YT-1) is in fact a

weighted sum of several one-month differences. We can find the operator in the

following way. The LHS of the monthly equation is (1-Bt)yt, and we want an

operator C to convert this to (1-BT)YT. Since BT = Bt
6 and Y

B
B

yT
t

t
t= −

−
1
1

6

we want
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( )( ) ( ) ( )C B B y B Y B
B
B

yt t t T T t
6 t

6

t
t1 1 1

1
1

− = − = − −
−

Thus, the necessary operator is

( ) ( )C B
B
B

A B B B B B Bt
t

t
t t t t t t= −

−






 = = + + + + +1

1
1

6 2

1
2 2 3 4 5 2

( ( ))

Developing this, we get

C(Bt)=1+2Bt+3Bt
2+4Bt

3+5Bt
4+6Bt

5+5Bt
6+4Bt

7+3Bt
8+2Bt

9+Bt
10

It is clear that if we apply the operator C(Bt) to the whole equation, first difference

terms of xt and zt in the RHS will cause no problems, since they are converted to

observable semi-annual differences, while lagged or unlagged xt, zt, or ut variables

as well as first differences of ut become more complicated.

We have for the flow variable xt:

                   C B x A B Xt t t T( ) ( )= 1

This is a moving six month sum that corresponds to a semi-annual value for only

one out of six terms. As before, we may estimate the intervening values. Linear

interpolation gives the estimate of C(Bt)xt  as

Table 5. Optimal coefficients in the expression L(BT)XT= (k0XT + k1XT-1 + k2XT-2)
for estimation of S(Bt)xt= C(Bt)xt when xt is AR(1)

γ k0 k1 k2 Error
variance

R*
2 Interpolation estimate

Error variance R*
2

0.01 3.503 2.503 -0.006 35.480 0.76 35.480 0.76
0.1 3.527 2.528 -0.056 40.297 0.77 40.330 0.77
0.2 3.554 2.559 -0.113 46.830 0.79 46.997 0.79
0.3 3.581 2.593 -0.174 54.801 0.81 55.288 0.81
0.4 3.607 2.632 -0.239 64.322 0.83 65.487 0.83
0.5 3.630 2.678 -0.308 75.260 0.86 77.776 0.85
0.6 3.642 2.732 -0.374 87.014 0.88 92.049 0.88
0.7 3.634 2.796 -0.429 98.285 0.92 107.560 0.91
0.8 3.594 2.865 -0.459 107.106 0.95 122.337 0.94
0.9 3.514 2.933 -0.448 111.369 0.98 132.238 0.97
0.99 3.419 2.968 -0.388 109.980 1.00 130.671 1.00
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inter-
polation

3.5 2.5

6
7

12
5

12 1X XT T+



−

An optimal estimate for the case when xt is AR(1) could be made along the same

lines as in Section 3, and results in the coefficients shown in Table 5. They are equal

to the interpolated estimates for low values of γ, but deviate from them more than in

earlier cases, when γ is growing. The variance of the interpolation estimates  are less

than 20 per cent higher than the optimal ones, but both are considerably higher than

in the case when the dependent variable is yt .The transformation of period-average

variables is of course similar to that of the flow variables. The only difference is that

the factor 6 is replaced by 36. End-of-period stock variables need, however, be

treated separately. Since  C(Bt) includes terms up to Bt
10, it is necessary  in the

linear interpolation to bring in a term with
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Table 6. Optimal coefficients in the expression L(BT)UT = (k0UT + k1UT-1 + k2UT-2)
for estimation of  S(Bt)ut = C(Bt)ut when ut is AR(1)

γ k0 k1 k2 Error
variance

R*
2 Interpolation estimate

Error variance R*
2

0.01 10.980 15.060 9.960 419.39 - 534.46 -
0.1 10.790 15.642 9.568 416.24 - 517.40 -
0.2 10.562 15.375 9.063 416.84 - 503.03 -
0.3 10.324 17.205 8.470 420.28 - 491.55 -
0.4 10.092 18.130 7.778 424.85 - 481.03 -
0.5 9.890 19.129 6.982 428.73 0.17 469.73 0.10
0.6 9.737 20.169 6.094 429.99 0.43 456.34 0.40
0.7 9.636 21.202 5.162 426.65 0.64 440.22 0.63
0.8 9.549 22.164 4.287 416.67 0.81 421.21 0.80
0.9 9.431 22.952 3.618 398.16 0.92 398.66 0.92
0.99 9.335 23.320 3.337 372.26 0.99 372.26 0.99

inter-
polation

9.333 23.333 3.333

UT-2 =ut-12 , giving

( )C B u U U Ut t T T T≈ + +− −
28
3

70
3

10
31 2

The coefficients sum to 36. Efficient estimation for ut = AR(1) gives similar

coefficients for high values of γ, see Table 6. For lower autocorrelations, the

weights move toward UT and UT-2 and the differences from the interpolated

estimates become rather large.

Since first differences of xt and zt are exactly changed to (XT-XT-1) and 6(ZT-ZT-1), we

can find the optimal coefficients for the estimation of C(Bt)xt-1 and C(Bt)zt-1 by using

the identity

xt-1 = xt - (xt - xt-1)

which of course gives

( ) ( ) ( )( ) ( ) ( )C B x C B x C B x x C B x X Xt t t t t t t t t t T T− − −= − − = − −1 1 1
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Table 7. Optimal coefficients in the expression L(BT)UT =  (k0UT + k1UT-1 + k2UT-2)
for estimation of  S(Bt) =C(Bt)ut-1  when ut is AR(1)

γ k0 k1 k2 Error
variance

R*
2 Interpolation estimate

Error variance R*
2

0.01 9.970 16.060 9.970 409.23 - 511.90 -
0.1 9.679 16.642 9.679 404.45 - 494.08 -
0.2 9.312 17.375 9.312 402.78 - 478.42 -
0.3 8.897 18.205 8.897 403.35 - 465.19 -
0.4 8.435 19.130 8.435 404.38 - 452.47 -
0.5 7.936 20.129 7.936 403.99 0.22 438.61 0.16
0.6 7.415 21.169 7.415 400.53 0.47 422.56 0.44
0.7 6.899 22.202 6.899 392.73 0.67 404.05 0.66
0.8 6.418 23.164 6.418 379.74 0.82 383.58 0.82
0.9 6.024 23.952 6.024 360.80 0.93 361.24 0.93
0.99 5.836 24.328 5.836 336.92 0.99 336.92 0.99

inter-
polation

5.833 24.333 5.833

Thus, from Table 5, we get for γ=0.7:

est C(Bt )xt-1= 3.634 XT + 2.796 X T-1 - 0.429 XT-2 - XT + XT-1 =

=2.634 XT + 3.796 XT-1 - 0.429 XT-.2

As in most cases, end-of-period variables are more complicated. Table 7 gives the

coefficients for estimation of C(Bt)ut-1. Like those for C(Bt)ut they depend rather

heavily on the value of γ. For all γ, we have k0=k2  , and the coefficients tend to

those of the interpolation estimate when γ→ 1. Again, the error variances are high,

and for γ<0.5, the calculated R*
2 is negative.

For end-of-period variables ut , the estimate of C(Bt)(ut-ut-1) that is obtained by the

difference between those shown in Tables 6 and 7 for C(Bt)ut and C(Bt)ut-1 is

restricted to ( ) ( )k U U k U UT T T T0 1 1 1 2− + −− − −  but has instead no restriction on

the sum (k0+k1). Table 8 shows the coefficients arrived at when allowing also a
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Table 8. Optimal coefficients in the expression  L(BT)UT = k0(UT -UT-1) + k1(UT-1 - UT-2)  
+k2(UT-2 - UT-3) for estimation of  S(Bt)ut =C(Bt) (ut - ut-1) when ut is AR(1)

γ k0 k1 k2 Error
variance

R*
2 Interpolation estimate

Error variance R*
2

0.01 2.504 2.002 1.494 15.122 - 22.562 -
0.1 2.544 2.022 1.433 16.407 - 23.326 -
0.2 2.600 2.050 1.350 18.282 - 24.611 -
0.3 2.675 2.085 1.244 20.699 - 26.363 -
0.4 2.764 2.130 1.106 23.717 0.07 28.562 -
0.5 2.884 2.186 0.930 27.308 0.16 31.112 0.04
0.6 3.034 2.253 0.712 31.230 0.26 33.787 0.20
0.7 3.204 2.330 0.467 34.874 0.37 36.171 0.35
0.8 3.362 2.408 0.231 37.250 0.51 37.633 0.50
0.9 3.467 2.472 0.060 37.388 0.64 37.420 0.64
0.99 3.500 2.500 0.001 35.340 0.75 35.340 0.75

inter-
polation

3.5 2.5 -

term k2(UT-2 - UT-3)  but imposing the restriction Σki = 6 , which is the sum of the

interpolation coefficients. Again, the coefficients tend to those of interpolation when

γ→ 1, but both estimates give rather poor results, even for high autocorrelations.

Since the first difference of an end-of-period variable is in fact a flow variable, it

would seem that the results for this case should be the same as those for C(Bt)xt ,

shown in Table 5. That this is not the case depends upon the fact that in Table 8, we

assumed ut to be an AR(1) process, while  Table 5 uses the assumption that xt=ut-ut-

1 is AR(1). Thus, the tables are not directly comparable. An AR(1) process with

positive autocorrelation for ut corresponds to a negative autocorrelation for xt , and

xt is not AR(1). However, the large differences between the results show that the

choice  of assumption regarding the data generating process is not without

consequences. On the other hand, the interpolation coefficients are the same,

regardless of which approach is chosen.
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6. The Specification of Lags

It has been shown in Sections 4 and 5 that lagged variables and first differences

cause trouble when we want to aggregate an equation to observations over periods

that are longer than that in which the equation was specified. It is, however,

interesting to note, that the aggregated expression (XT-XT-1) which we have used as

an estimate of Σ(xt-xt-1), possibly with some lag, has an exact equivalent in the

disaggregated world, not only as a rather complicated sum C(Bt)(xt-xt-1) , but also as

Σ(xt-xt-6). This means that we would not have run into any trouble in aggregation, if

we had specified a lag in the monthly equation of six months instead of one.

This observation naturally leads to the question: Which is the correct lag in the

specification of the equation? The appearance of lags in an econometric equation

may stem from various sources. We will discuss two of them here: an error

correction mechanism and the estimate of a net flow as the first difference of a stock

variable. Both are relevant for the exchange rate equation.

As for the error correction mechanism, it may in a simple form look like this:

(yt-yt-1) = βτ(xt-xt-1) + α(βxt-1-yt-1)+εt (14)

The interpretation is that the expected change in y depends upon the change in (the

equilibrium state) x and the deviation from (equilibrium) βx during the previous

period.

The meaning of "the previous period" is rather vague, and economic theory seldom

gives any indication of the appropriate length of the period. So, in practice it is

almost always set equal to the length of the observation period. In this case, the

equation was specified with monthly data, so the lag was set to one month. It was
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pointed out above, that from a data point of view a more practical lag would be six

months. In the present case, this seems to be a very long time for an exchange rate

to react to an out-of-balance value, but the reasonableness of such a lag should be

discussed when the model is specified.

The other source of lagged values or differences was the estimation of a net flow

from the difference of a stock variable. In the exchange rate equation, this is in fact

the source of all difference terms. If only the difference of the stock variable enters

the equation, no problem arises in the aggregation, since the difference of an end-of-

period stock variable has its direct counterpart in the semi-annual data (see p.20).

However, in this case, the whole equation determining the stock variable was

differenced in order to be substituted into the exchange rate equation. Thus, the one-

period differences of several monthly-average variables also enter the equation. The

consequences of changing these to six-month differences have to be considered.

However, this doubt about the appropriateness of setting the one period lag equal to

one month naturally leads to a suggestion that the equation should be specified in

terms of the semi-annual variables, but taking into consideration the necessity of

estimation on monthly data. To evaluate this suggestion, we have to think in more or

less the same terms as in Section 1, only changing aggregation into disaggregation.

As before, XT and ZT terms cause no trouble. It is the lagged effects and the end-of-

period variables that are more problematic cases. If a variable is thought to exert its

influence on the dependent variable over a period of time or only after some delay, it

is common practice in econometric modelling to specify a distributed lag. With only

semi-annual observations, it is probably seldom necessary to go beyond the previous

half-year. But how do we express k0XT+k1XT-1 in terms of monthly variables?
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If the delay is considered to be fairly short, only a month or two, most of the effect

comes within the half year, and it may not be necessary to include XT-1 at all. For

estimation on monthly data, one or two lags may be included, and the sum of their

coefficients can be allotted to XT. With longer lags, it may be necessary to use the

type of estimation we presented in Sections 3 and 4. For end-of-period variables,

similar considerations could be made. They occur often as UT-1, i.e. beginning-of-

period values, to which agents are supposed to react. How long a reaction lag is

realistic? Is it necessary to interpolate between UT and UT-1 to get a precise timing?

These questions and suggestions are admittedly somewhat provocative, and can

perhaps be used as excuses for rough and easy modeling. We believe, however, that

it is appropriate to have the semi-annual as well as the monthly perspective in mind

when creating a model that should be used in the way we are discussing in this

paper. In the following we will, however, return to the situation where we have

specified and estimated a monthly model and want to transform it to semi-annual

form.

7. Lagged Endogenous Variables

The previous Sections dealt with problems encountered when the RHS of the

equation contains lagged exogenous variables. Lagged endogenous variables have,

however, to be treated in a different way. In a monthly equation, the appearance of

yt-1 as an explanatory variable does not create too much of a problem for estimation.

But when aggregating to semi-annual data, the observation with a lag of one month

is in fact included in the value of the dependent variable and thus appears on both

sides of the equation.
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Several authors have dealt with this problem in the following form. Given an

ARMA model for yt in monthly data, what would an equivalent process in terms of

aggregated data be like? By equivalent process we here mean one that generates the

same development of the dependent variable as the monthly model, when the

resulting monthly data are summed to half-years. Some of the authors have also

treated the same problem with one or more exogenous variables present (an

ARMAX process). It turns out that the AR part of the model is not influenced by the

presence of an exogenous variable, while the MA part may be considerably more

complicated.

It was noted already by Amemiya and Wu (1972) that the m-month aggregate

equivalent to a monthly process

A(Bt)yt = F(Bt)εt   is A B Y F BT T T T
∗ ∗ ∗=( ) ( )ε

where εt and εT
*  are white noise variables. A*(BT) is of the same order as A(Bt) and

has roots that are the mth power of the roots of A(Bt). In the case of an AR(1)

process, this results in a particularly simple transformation. Thus, if

yt = ϕyt-1 +εt    then Y Y F BT
m

T T T= +−
∗ ∗ϕ ε1 ( )

Thus, in contrast to the case with lagged exogenous variables, no estimate of a

"skew" sum of months is needed, but instead the coefficient is changed from the

monthly equation.

In our case with m=6, the change can be large. Thus, for ϕ=0.5, the coefficient in

the semi-annual equation would be ϕ6 = 0.016. It may be questioned if it is worth-

while to keep the term at all.

For the exogenous variables, we must observe that in order to transform the

dependent variable in a proper way, we have to use an operator that is different
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from A1 and C, used in previous Sections. The proper operator for an AR(1) model

is easy to find if we move the yt-1 term to the LHS. In order to change (yt-ϕyt-1) into

(YT-ϕ6YT-1), we have to multiply by

1
1

1
1

6 6 6−
−

−
−

ϕ
ϕ

B
B

B
B

t

t

t

t

*

where the latter factor represents the summation over six months, and we take yt to

be a flow variable. For the simple model

yt = ϕyt-1 + bxt + εt (15)

we get, when YT-1 is moved back to the RHS:

Y Y b
B
B

X
B
B

ET T
t

t
T

t

t
T= + −

−
+ −

−−ϕ ϕ
ϕ

ϕ
ϕ

6
1

6 6 6 61
1

1
1

where ET is the sum of the corresponding monthly residuals.

It is seen that the coefficient of YT-1 is ϕ6 as in the case without exogenous variables.

The XT term is, however, somewhat complicated, and contains many "skew" sums

that are not observed in the semi-annual case. As in previous cases, we may

estimate them. If this is done again in the simplest way by linear interpolation, we

get

( ) ( )[ ]b
X XT T6

6 5 4 3 2 2 3 4 52 3 4 5 2 3 4 5
1+ + + + + + + + + + −ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ (16)

which differs from b in a rather complex way. As an example, for ϕ=0.7 and b=0.5,

we get the estimate of the semi-annual equation as

YT = 0.118YT-1 + 1.095XT + 0.376XT-1

For this case, we have not calculated optimal coefficients for the situation when xt is

AR(1), and we cannot judge how robust the interpolation estimates are.
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First differences of the exogenous variables are somewhat easier to handle than the

variable values themselves, due to the fact that the linear interpolation gives the

same result for all lags between 0 and 5, thus

( ) ( )
B B x

B X
t
i

t t
T T1

1
6

− ≈
−

∑ for i=0,1,2,...,5

This implies that a term with the first difference of a variable in the RHS of equation

(15), say  c(xt - xt-1) , will be transformed to c*(XT-XT-1) in the semi-annual equation

with

c
c* = −

−
1
1 6

6ϕ
ϕ

assuming that xt is of the same kind of variables as yt.

Finally, there remains the case with a lagged exogenous variable with coefficient d

in the RHS of equation (15). The aggregation of such a term will result in an

expression similar to (16), but with slightly different weights:

( ) ( )[ ]d
X XT T6

5 4 3 2 1 2 3 4 5 62 3 4 2 3 4 5
1+ + + + + + + + + + −ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

Both expressions can be somewhat simplified by using summation formulae for

geometric series. For the resulting expressions, as well as for results regarding end-

of-period stock variables, see Table 9, to be introduced in Section 9.

In an equation describing an error correction mechanism, as was exemplified by

model (14), the exogenous variable enters with the contemporaneous as well as a

lagged value. By rearranging the terms, the model can be written

yt = (1-α)yt-1 + βτxt + (α-τ)βxt-1+εt (17)

Treating this equation in the same way as (15), we get additional terms

corresponding to the xt-1 term in (17). These terms also contain sums of x which
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have no equivalent in X and thus have to be estimated. If we stick to linear

interpolation, the final result is an equation of the same form as (14):

YT-YT-1 =β τ*(XT-XT-1) + α*(β XT-1-YT-1)+ET
*

where

( )α α* = − −1 1 6    and

τ τ α
α

*
*

= − −
1

1
6

           (18)

and ET* is an error term. It is here assumed that x and y are variables of the same

kind, either flow or period-average variables.

Other exogenous variables in the equation are affected by the aggregation in the

same way as in equation (15), with ϕ replaced by (1-α).

8. Using Alternative Operators

When determining an operator that aggregates the monthly equation into a half-

yearly one, we have so far chosen one that transforms the LHS of the equation

exactly to the equivalent form of half-yearly variables. Then, some terms on the

RHS have had to be estimated, since they contained variable values that do not

correspond to the half-yearly values that are assumed to be available.

An alternative strategy would be to use any operator to both sides of the equation,

and then estimate the resulting expressions. The operator could then be chosen in

such a way that the transformations and the estimates are as simple as possible.

As an example, take a simple equation:

yt-yt-1=axt+εt
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The equation was aggregated by the operator C(Bt), and the optimal coefficients for

estimating C(Bt)xt are shown in Table 5. The interpolation expression is

(3.5XT+2.5XT-1). However, we could try the operator A1(Bt) instead:

A1(Bt)(yt-yt-1) = aA1(Bt)xt+A1(Bt)εt 

We found on p. 20 that for a flow variable yt, the interpolation estimate of a

difference is ( )1
6 1Y YT T− − , while  ( )A B x Xt t T1 =   exactly. Thus, neglecting the

residual, we get ( )1
6 1Y Y aXT T T− ≈−   or   Y Y aXT T T− ≈− 1 6  . Similar operations

could be made with any expressions, although the result may not be so simple as in

the present case.

If the result of the aggregation is judged by the increase in variance of the equation´s

 estimate of the LHS expression, then an operator that does not exactly transform

the LHS must necessarily yield estimates that are inferior to the optimal ones that

we have given in the tables 3-8, since these are derived as least squares estimates.

That the difference can be substantial even in comparison with the previously

derived interpolation estimates is shown by the example given above. Again

neglecting the residual, assuming a=1, and xt to be generated by an AR(1) process

with variance =1, we get the following variances for the estimates of (YT-YT-1):

                      Estimator

      (3.5XT+2.5XT-1)    XT

       γ                          Variance

      0.1              40.33 128.25

      0.5              77.78 279.85

      0.9            132.24 783.56

The variance is increased between 3 and 6 times by using the non-optimal operator.

Thus, we stick to the strategy of finding an operator that transforms the LHS
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exactly. We then have to estimate some terms of the RHS as has been shown in the

previous Sections. 

9. Summary and Conclusions

We summarize the results in Table 9 (p. 42). The columns represent various forms

of the dependent variable, and the rows show the estimates of the multipliers that

should be used for each form of the RHS variables. Exact values are written

between → arrows←  , linear interpolation results are given by formulas, and for

optimal estimates when the variable is AR(1), the number of the relevant table is

given.

It is understood that the dependent variable is a flow variable. If it is a period-

average variable, all entries should be divided by 6. The case of an end-of-period

variable as dependent is not covered in the present paper.

As a complement to the results for aggregation of six terms, Table 10 (p. 43) shows

interpolation coefficients for the aggregation of two terms, e.g. from quarterly to

semi-annual observations. It is  similar in form to Table 9, and it covers the case

when the dependent variable is a flow variable. If it is a period-average variable, all

entries should be divided by 2.

When calculating optimal coefficients for estimation and the corresponding error

variances, we have noted a marked difference in the results for flow and average

variables on  one hand, and end-of-period variables on the other. While the

estimates for the former group generally performed fairly well, the end-of-period

variables showed large error variances, particularly if their autocorrelation was low.
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It seems clear that basing the estimates on every sixth observation gives very

uncertain results. Could anything be done to improve the estimates?

As has been noted above, some variables that measure the state of some

phenomenon are aggregated by taking averages of their values over the period.

When this is the case, these variables can be treated in the same way as flow

variables, resulting in better estimates than for a corresponding end-of-period

variable. Thus, if in the model a state variable is measured by its average value over

the period, the aggregation over time causes smaller errors than if it is measured by

its end-of-period value.

From the point of view of economic theory, it seems in many cases to be quite

acceptable to measure a stock variable by its period average. In an equation

describing the reaction of some actors to the value of a stock variable, say wealth,

the traditional method is to specify that it is the value in the beginning of the period

that is relevant. This may be a realistic assumption for a relatively short period, but

for a longer period, some kind of average seems natural. Thus, in the model building

phase, it should be kept in mind that, if measuring a stock variable  by its average

instead of its ultimate value is acceptable from an economic point of view, it is

definitely preferable from a statistical point of view, when the equation is to be

aggregated over time.

It should be pointed out that this recommendation does not necessarily extend to the

situation when the relation has to be estimated in its aggregated form and tests for

Granger-causality are performed. In this case, Kirchgässner and Wolters (1992)

have shown that spurious causality is less likely to be found if the dependent and the

exogenous variable are aggregated in the same way, whether averaged or end-of-
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period. This is, however, a situation that is different from ours, where the relation

has already been estimated on disaggregated data.

We will end this concluding Section by a practical application. The results of the

paper are used for converting the monthly equation for the exchange rate into a

semi-annual equation. The equation estimated on monthly data has the following

form:

lvxt -lvxt-1= 0.49863(lrpt -lrpt-1)- 0.36243 (lvxt-1-lrpt-1) - 18.7(rdifft -rdifft-1 ) -

-12.8915 rdifft-1+0.58920 capt/ m3sekt-1 + 0.07587 (19)

where lower case letters have again been used to designate monthly values of the

variables:

lvx = log exchange rate (in SEK per foreign currency unit)

lrp = log(Swedish prices/foreign prices)

rdiff = interest rate difference Sweden - Germany

cap = change in net foreign liabilities in the private sector

m3sek = money stock

The first three of these variables are period-average variables (z type), cap is a flow

variable (x type), while m3sek is an end-of-period stock variable (u type). The

corresponding semi-annual variables will be designated by upper-case letters.

The equation is of the error correction type, with lrp as the norm for lvx. Thus, we

have to use the third column of Table 9, remembering that the dependent variable is

of the z type, so we have to divide all entries by 6. We should also note the

modifications given in Section 7 for the error-correction case. In terms of the

notation given there, we have α=0.36243, and thus ϕ=0.63757. Furthermore,

τ=0.49863  and β=1. From (18), we can calculate

α*=0.9328  and  τ*=0.7849
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For the other variables, we use the formulae in Table 9. Thus the coefficient for

(1-BT)RDIFF is -18.7*0.4290 = -8.0218

BT(RDIFF) is -12.8915*(1.5756+0.9983BT)=-20.311-12.8692BT

the constant is 0.07587*2.5738=0.1953

The remaining term, cap/Bt m3sek, is more difficult. It is a ratio between two

variables, which are not even of the same type. Since the mean over six months of

the ratios is not the same as the ratio of the means, we have a problem of a kind

similar to that of logarithms, discussed in Section 2. However, the variation in the

denominator variable, m3sek, is small. Its standard deviation is only 2 per cent of its

mean, so it is not very important which value of m3sek that enters the denominator.

This means that the difference between CAPT/M3SEKT-1 and Σ(capt/m3sekt-1) is not

very large, and we disregard it. Thus, we can treat this ratio as a flow variable

without much loss of information.

With this approximation, we get the coefficient for CAPT/M3SEKT-1 as

0.58920(0.3341 + 0.0949 BT) = 0.1969+0.0559BT

To evaluate the approximations, we may calculate the estimates of LVXT from semi-

annual data to see how closely they trace the values obtained from monthly data. In

order not to distort the comparison by the residuals of the monthly estimates, we

make the calculations as if the monthly equation gave the true values of lvx, and thus

all residuals were = 0. We still need a starting value for lvx, and we chose the

observed value for June 1993. Using this, we can calculate lvx according to the

monthly equation for all months of the second half of 1993. The average of these

values is used as a starting point for the semi-annual equation. Unfortunately, this

leaves only two observations for the comparison, the first and the second half of

1994. We get

1/94   2/94

from monthly data 0.2382   0.2235
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from semi-annual data 0.2340   0.2267

        Difference 0.0042 - 0.0032

The difference could be compared with the standard error of the estimate. In the

monthly equation this was 0.0163 for the estimate of (1-Bt)lvx. This translates to an

error of 0.0262 for the semi-annual difference, computed from the monthly data. If

for a one-step-ahead forecast the estimated difference is added to the observed

value of the previous period, the standard error of the forecast will be the same as

for the difference. Thus, an additional error of about 0.004 caused by using semi-

annual data does not seem to be too serious.

To base a judgement of the reliability of the semi-annual approximations on only

two observations seems perhaps not very assuring. Thus, we have also made a

Monte Carlo study of the difference between the monthly and the semi-annual

estimates.

The variables rdiff and lrp were simulated using AR(1) models with autocorrelation

coefficients close to those observed for these variables. For cap/Btm3sek, no

ARIMA model was found to fit, so we used an i.i.d. random model with average

equal to that observed for the period July 1993 - Dec. 1994 (For details, see the

Appendix).

Cutting off a few periods in the beginning of the series, we then calculated LVX

according to the monthly as well as the semi-annual equation. The mean of the

difference between these estimates was very close to 0, and its standard deviation

around 0.0022. The two observations on actual data do not challenge this result. We

can thus conclude that in this case, the estimates and approximations used for the
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semi-annual equation increase the residual variance of the LVX estimate only very

slightly.
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Table 9. Summary of coefficient multipliers in different situations

Dependent
variable

yt (yt-yt-1) (yt-ϕyt-1)

Operator
A1 = 

1
1

6−
−

B
B

t

t

C A= 1
2

A
B
B

t

t
1

6 61
1
−
−
ϕ
ϕ

RHS variables

Constant → ←6 → ←36 → 6
1
1

6−
−
ϕ
ϕ

←

xt
→ ←1 Tab. 5

3.5XT + 2.5XT-1

( ) ( )
( )

6 7 6 5
6 1

7 6 7
1

2
− + + − +

−
−ϕ ϕ ϕ ϕ ϕ

ϕ
X XT T

zt → ←6 6 × Tab. 5
21ZT + 15ZT-1

6 × (expression above)

ut 3.5UT + 2.5UT-1 Tab. 6
28
3

70
3 1U UT T+ +−

+ −
10
3 2UT

[1
6

21 15 10 6 32 3 4 5( )+ + + + +ϕ ϕ ϕ ϕ ϕ UT +

+ ( )15 21 25 27 27 252 3 4 5
1+ + + + + −ϕ ϕ ϕ ϕ ϕ UT +

+ ]( )ϕ ϕ ϕ ϕ2 3 4 5
23 6 10+ + + −UT

xt-1 Tab. 3
5
6

1
6 1X XT T+ −

2.5XT + 3.5XT-1 ( ) ( )
( )

5 6 1 7 6
6 1

6 6 7
1

2
− + + − +

−
−ϕ ϕ ϕ ϕ

ϕ
X XT T

zt-1 6 × Tab. 3
5ZT + ZT-1

15ZT + 21ZT-1 6 × (expression above)

ut-1 Tab. 4
2.5UT + 3.5UT-1

Tab. 7
35
6

146
6 1U UT T+ +−

+ −
35
6 2UT

[1
6

15 10 6 32 3 4( )+ + + +ϕ ϕ ϕ ϕ UT +

+ ( )21 25 27 27 25 212 3 4 5
1+ + + + + −ϕ ϕ ϕ ϕ ϕ UT +

+ ]( )ϕ ϕ ϕ ϕ ϕ+ + + + −3 6 10 152 3 4 5
2UT

(xt-xt-1) 1
6

→ ←1 1
6

1
1

6−
−
ϕ
ϕ

(zt-zt-1) 1 → ←6 1
1

6−
−
ϕ
ϕ

(ut-ut-1) → ←1 Tab.8
3.5(UT-UT-1) +
+2.5(UT-1-UT-2)

[1
6 1

6 72
7

1( )
)( )

−
− + − −ϕ

ϕ ϕ U UT T +

]+ − + −− −( )( )ϕ ϕ ϕ6 56 7
1 2U UT T

The values are valid under the assumption that yt is a flow variable. If it is a period-average
variable, divide all entries by 6. If y is an end-of-period stock variable, the table does not apply.

→ Figures←  between arrows are exact equivalents. The table references give optimal estimates
when the RHS variable is AR(1), the formulae are linear interpolation results.
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Table 10. Interpolation coefficients for aggregation of 2 observations

Depen-
dent
variable

yt (yt-yt-1) (yt-ϕyt-1)

Operator
A1 = 

1
1

2−
−

B
B

t

t

C A= 1
2

A
B
B

t

t
1

2 21
1
−
−
ϕ
ϕ

RHS variables

Constant → ←2 → ←4 → 2 (1+ϕ)←

xt → ←1 1.5XT + 0.5XT-1
1

2 2 1+



 + −

ϕ ϕ
X XT T

zt → ←2 3ZT + ZT-1 (2+ϕ)ZT + ϕ   ZT-1

ut 1.5UT + 0.5UT-1 2UT+2UT-1 3
2

1 3
2 1

+ + +
−

ϕ ϕ
U UT T

xt-1 05 05 1. .X XT T+ − 0.5XT + 1.5XT-1 1
2

1 2
2 1X XT T+ +

−
ϕ

zt-1 ZT + ZT-1 ZT + 3ZT-1 Z ZT T+ + −( )1 2 1ϕ

ut-1 0.5UT + 1.5UT-1 0.5UT+3UT-1+0.5UT-2 1
2

3 3
2 21 2U U UT T T+ + +− −

( )ϕ ϕ

(xt-xt-1) 0.5 → ←1 1
2

1( )+ ϕ

(zt-zt-1) 1 → ←2 1+ϕ

(ut-ut-1) → ←1
1.5(UT-UT-1)+0.5(UT-1-

UT-2)
2

2 21 1 2

+ − + −− − −
ϕ ϕ

( ) ( )U U U UT T T T

The values are valid under the assumption that yt  is a flow variable. If it is a period-average
variable, divide all entries by 2. If it is an end-of-period stock variable, the table does not apply.

→ Figures←  between arrows are exact equivalents. The formulae give interpolation estimates.
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Appendix

The following models were used for the exogenous variables in the Monte Carlo

study mentioned on pp. 40-41:

rdifft = 0.96 rdifft-1 + 0.068 + at

lrpt   = 0.92 lrpt-1 + 0.006 + bt

capt/m3sekt-1 = -0.007 + ct

where at, bt, and ct are i.i.d. logistically distributed with variances

var at = 0.074

var bt = var ct = 0.000053

For each of these variables, 6N "monthly" observations were generated. From

these, N "semi-annual" observations were calculated. From an initial value of lvx,

equation (19) - without residual - was used with the observations of the

exogenous variables to generate 6N "monthly" lvx observations, which were

averaged to N "semi-annual" observations. These were compared to the values

obtained by using the "half-yearly" exogenous variable values with the

coefficients given on pp. 38-39 to get approximate LVX values, again from an

initial value.

N was set to 10 000. The average of the difference was 0.000028, and the

standard deviation within the sample was 0.00216.



46

References

Amemiya, T & Wu, R.Y. (1972). The effect of aggregation on prediction in the

autoregressive model. Journal of the American Statistical Association 67, 628-

632.

Boot, J.C.G. et al. (1967). Further methods of derivation of quarterly figures from

annual data. Applied Statistics 16, 65-75.

Brewer, K.R.W. (1973). Some consequences of temporal aggregation and

systematic sampling from ARMA and ARMAX models. Journal of Econometrics

1, 133-154.

Kirchgässner, G. &  Wolters, J. (1992). Implications of temporal aggregation on

the relation between two time series. Statistical Papers 33, 1-19.

Marcellino, M. (1996). Temporal aggregation, missing observations, outliers, and

forecasting: A unifying non-model based procedure.  European Meeting of the

Econometric Society, Istanbul.

Markowski, A. (1996). The financial block in the econometric model KOSMOS.

National Institute of Economic Research Working Paper 53, forthcoming.

Tiao, G.C. & Wei, W.S. (1976). Effect of temporal aggregation on the dynamic

relationships of two time series variables. Biometrika 63, 513-523.

Wei, W.W.S. (1978). The effect of temporal aggregation on parameter estimation

in distributed lag model. Journal of Econometrics 8, 237-246.



47

Weiss, A.A. (1984). Systematic sampling and temporal aggregation in time series

models. Journal of Econometrics 26, 271-281.

Zellner, A. & Montmarquette, C. (1971). A study of some aspects of temporal

aggregation problems in econometric analyses. Review of Economics and

Statistics 53, 335-342.



48

Tidsaggregering av ekonometriska ekvationer
Sammanfattning

I samband med uppbyggnaden av en finansiell sektor i Konjunkturinstitutets ekonometriska

modell KOSMOS uppstod problemet att vissa samband utsatts för strukturella förändringar

under senare år. Endast ett fåtal år kunde därför användas för skattning av dessa ekvationer.

För att få fler observationer som underlag för skattningen användes då månadsdata, medan den

reala delen av modellen är uttryckt i halvårsdata. Månadsekvationerna måste sedan

transformeras för att kunna användas tillsammans med de övriga.

Denna transformation visar sig vara inte helt trivial annat än i vissa speciella fall. Man måste

skilja mellan tre slags variabler, som uppför sig på olika sätt vid aggregering:

1. flödesvariabler, t ex BNP (betecknas med x)

2. lägesvariabler, uttryckta som genomsnittsvärden över perioden, t ex priser (z)

3. lägesvariabler, uttryckta som värde vid periodens slut, t ex kapitalstock eller

lagervolym (u).

Det förutsätts att den beroende variabeln i ekvationen är av en av de två första typerna. Då kan

samtidiga värden av exogena variabler av dessa två typer lätt aggregeras. Däremot uppstår

problem dels när en variabel är av den tredje typen, dels när en variabel förekommer med ett

tidsförskjutet värde. Den aggregerade ekvationens högra led kommer då att innehålla

funktioner av de exogena variablerna som inte kan uttryckas med hjälp av halvårsvärdena, vilka

är de enda som förutsätts vara tillgängliga inom ramen för modellen.

Man får då tillgripa approximationer eller skattningar av de önskade funktionerna. Sådana

skattningar diskuteras i denna skrift. I texten redovisas dels enkla interpolationer, dels minsta-

kvadrat-skattningar under antagande av att den exogena variabeln genereras av en AR(1)-

process. Resultaten blir olika om vänstra ledet av ekvationen är ett enskilt värde av den

beroende variabeln eller om den är en differens. Andra resultat erhålles också när ett

tidsförskjutet värde av den beroende variabeln uppträder i högra ledet. En sammanfattning ges

i tab 9, sid 42, för en aggregering av sex observationer, och i tab 10, sid 43, för två

observationer.
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I tabellerna 3-8 ges också varianserna för skattningsfelen, då den exogena variabeln genereras

av en AR(1)-process, och man aggregerar sex observationer. Det visar sig att lägesvariabler av

typ 3 ger väsentligt högre felvarianser än de övriga variabeltyperna. I avsnitt 9 diskuteras

därför om sådana variabler kan undvikas vid modellbygge och ersättas av typ2-variabler.

Slutligen tillämpas resultaten på ekvationen för växelkursen i KOSMOS. Det visar sig att i detta

fall approximationerna inte nämnvärt ökar ekvationens residualvarians.


