KIMOD 2.0

Documentation of changes in the model from January 2007 to January 2009

Tomas Forsfält

1 I appreciate helpful comments from Göran Hjelm, Jonny Nilsson, Juhana Vartiainen, and seminar participants at NIER.
NIER prepares analyses and forecasts of the Swedish and international economy and conducts related research. NIER is a government agency accountable to the Ministry of Finance and is financed largely by Swedish government funds. Like other government agencies, NIER has an independent status and is responsible for the assessments that it publishes.

The Working Paper series consists of publications of research reports and other detailed analyses. The reports may concern macroeconomic issues related to the forecasts of the institute, research in environmental economics, or problems of economic and statistical methods. Some of these reports are published in their final form in this series, whereas others are previews of articles that are subsequently published in international scholarly journals under the heading of Reprints. Reports in both of these series can be ordered free of charge. Most publications can also be downloaded directly from the NIER home page.
Summary in Swedish

För mer information om KIMOD, se www.konj.se/kimod.
Abstract

KIMOD is a model in constant progress. Since the first documentation of KIMOD in January 2007, the model in use has changed gradually. It's now time to introduce the second version of the model – KIMOD 2.0. As time passes, new data and new judgement causes parametric changes. In chapter 1, some news in the calibration of steady state is discussed. Moreover, we have also introduced a new parameterisation concerning the time it takes for the individuals to recognize and internalize permanent shocks into their behaviour. This is shown in chapter 2. Changes in the model changes the dynamic properties. Therefore, in chapter 3, we compare the impulse-response functions of KIMOD 2.0 and KIMOD 1.0 for five permanent and five temporary shocks.

For more information about KIMOD, see www.konj.se/kimod.
Contents

1. New calibration of steady-state ... 6
2. New variables in the sticky-price model .. 8
3. Impulse-response analyses .. 10
 3.1 A permanent productivity shock ... 10
 3.2 A permanent labour supply shock ... 10
 3.3 A permanent change to the relative bargaining strength of workers 10
 3.4 A permanent reduction in the target ratio of government debt to GDP .. 11
 3.5 A permanent negative shock to the inflation target 11
 3.6 A temporary nominal wage shock .. 11
 3.7 A temporary shock to the exchange rate ... 11
 3.8 A temporary labour supply shock .. 12
 3.9 A temporary policy shock ... 12
 3.10 A temporary demand shock ... 12
References .. 14
Appendix .. 15
1. New calibration of steady-state:

Since the documentation of KIMOD 1.0 in Bergvall et al. (2007), a number of changes have been done in the model. In particular, about 30 parameters of the steady-state model have been recalibrated. Some are based on new judgement, others on empirical estimates.

The long-run growth rate of productivity has been revised upwards from 1.8 percent per year in KIMOD 1.0 to 2.0 percent in KIMOD 2.0. This is consistent with NIER’s judgement of long-run GDP-productivity growth (SOU 2008:14). The long-run growth rate of the labour supply is still zero. This implies that flow variables, e.g. GDP, consumption, investments, exports etc., grow at 2.0 percent per year in steady state.

The long-run real interest rate is now 5.6 percent, which is 2.4 percentage points lower than in KIMOD 1.0. This follows from the assumption of a lower, and more realistic, private investment ratio to GDP (17 percent in current prices), together with the assumption that the capital-output ratio in the private sector was in equilibrium in 2007. The equilibrium capital stock is therefore larger than before. The desired investment-capital ratio is thus lower, and this assumption determines the real interest rate. A lower real interest rate implies a larger capital stock in steady state, as well as a higher investment level. The assumptions above also implies that the parameter that determines the cost of capital adjustment is now larger, which makes it more expensive to adjust the capital stock after a shock.

The subjective discount rate is now higher (closer to one), which follows from the lower real interest rate and the fact that the probability of survival is left unchanged (0.96). This affects the consumption path. The marginal propensity to consume out of wealth is lower, at the same time as consumption growth is higher (due to higher productivity growth).

In the labour market, the separation rate has increased from the low 0.04 in KIMOD 1.0 to the more empirically adequate 0.20. This implies that the average time a job survives has decreased from 25 to 5 years. The calibrated unemployment benefit has been lowered from 80 to 70 percent of the wage, which affects the wage bargaining process. The labour market is calibrated to meet the judgement of NIER concerning equilibrium unemployment as well as long term forecasts concerning labour supply and average hours worked.

The magnitude of the estimated elasticity of real exchange rate to net foreign assets is now lower. The elasticity is now –0.17, compared to –0.30 in KIMOD 1.0. This means less appreciation of the real exchange rate in response to a given raise in net foreign assets, caused by e.g. a cut in government debt. This recalibration is based on our judgement that KIMOD 1.0 overestimated the elasticity between government budget balances and the real economy.

Table 1 depicts some of the steady state parameters in KIMOD 2.0.

2 This chapter builds on Höglén (2008).
Table 1 KIMOD 2.0 – Steady state calibration

<table>
<thead>
<tr>
<th>#</th>
<th>Label</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Growth factor, productivity $A(t)/A(t-1)$</td>
<td>AGRF_SS</td>
<td>1.0202</td>
</tr>
<tr>
<td>2</td>
<td>Government wage as share of private wage W_g/W_p</td>
<td>ALFA_SS</td>
<td>0.93</td>
</tr>
<tr>
<td>3</td>
<td>Subjective discount factor</td>
<td>BETA_SS</td>
<td>0.9725</td>
</tr>
<tr>
<td>4</td>
<td>Depreciation rate</td>
<td>DELTA_SS</td>
<td>0.0742</td>
</tr>
<tr>
<td>5</td>
<td>Elasticity in CH equation</td>
<td>ECH_SS</td>
<td>0.3323</td>
</tr>
<tr>
<td>6</td>
<td>Elasticity in IH equation</td>
<td>EIH_SS</td>
<td>0.543</td>
</tr>
<tr>
<td>7</td>
<td>Estimated elasticity of unempl. in matching function</td>
<td>EMA_SS</td>
<td>0.4</td>
</tr>
<tr>
<td>8</td>
<td>Estimated elasticity of RER to export relative import prices</td>
<td>EERE1_SS</td>
<td>-0.75</td>
</tr>
<tr>
<td>9</td>
<td>Estimated elasticity of RER to relative productivity</td>
<td>EERE2_SS</td>
<td>-0.41</td>
</tr>
<tr>
<td>10</td>
<td>Estimated elasticity of RER to net foreign assets</td>
<td>EERE3_SS</td>
<td>-0.17</td>
</tr>
<tr>
<td>11</td>
<td>Elasticity in XH equation</td>
<td>EXH_SS</td>
<td>0.5721</td>
</tr>
<tr>
<td>12</td>
<td>Elasticity of capital in production function</td>
<td>EYOG_SS</td>
<td>0.375</td>
</tr>
<tr>
<td>13</td>
<td>Vacancy cost relative to real wage</td>
<td>GAMMA_SS</td>
<td>1.0031</td>
</tr>
<tr>
<td>14</td>
<td>Capital stock, general government, ratio K_g/Y</td>
<td>KG_Y_SS</td>
<td>0.4542</td>
</tr>
<tr>
<td>15</td>
<td>Installation cost parameter</td>
<td>LAMBDA_SS</td>
<td>0.6911</td>
</tr>
<tr>
<td>16</td>
<td>Employment, general government</td>
<td>LG_SS</td>
<td>1.5218</td>
</tr>
<tr>
<td>17</td>
<td>Hours worked, general government, average L_hg/L_g</td>
<td>LGH_LG_SS</td>
<td>1.512</td>
</tr>
<tr>
<td>18</td>
<td>L_h/L Average working hours</td>
<td>LH_L_SS</td>
<td>1.665</td>
</tr>
<tr>
<td>19</td>
<td>Relative bargaining strength of unions</td>
<td>MY_SS</td>
<td>0.5</td>
</tr>
<tr>
<td>20</td>
<td>Growth factor, labor supply $L_S(t)/L_S(t-1)$</td>
<td>NT_SS</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>Relative price P_{byg}/P</td>
<td>PBYG_P_SS</td>
<td>1.528</td>
</tr>
<tr>
<td>22</td>
<td>Government consumption, nominal share of GDP</td>
<td>PGG_PY_SS</td>
<td>0.268</td>
</tr>
<tr>
<td>23</td>
<td>Growth factor, GDP-deflator in steady state</td>
<td>PGRF_SS</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Unemployment benefit replacement ratio</td>
<td>PHI_SS</td>
<td>0.7</td>
</tr>
<tr>
<td>25</td>
<td>Probability of survival</td>
<td>PID_SS</td>
<td>0.9618</td>
</tr>
<tr>
<td>26</td>
<td>Gross investments, general government, nominal share of GDP</td>
<td>PIIG_PY_SS</td>
<td>0.03</td>
</tr>
<tr>
<td>27</td>
<td>Net bond holdings, general government, nominal share of GDP</td>
<td>PMBO_PY_SS</td>
<td>0.27</td>
</tr>
<tr>
<td>28</td>
<td>Relative price, PMF/PF</td>
<td>PMF_PF_SS</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>Real interest rate</td>
<td>RY_SS</td>
<td>0.0563</td>
</tr>
<tr>
<td>30</td>
<td>Separation rate</td>
<td>S_SS</td>
<td>0.2</td>
</tr>
<tr>
<td>31</td>
<td>Tax rate on private consumption</td>
<td>TAXC_SS</td>
<td>0.277</td>
</tr>
<tr>
<td>32</td>
<td>Tax rate on dividends</td>
<td>TAUD_SS</td>
<td>0.466</td>
</tr>
<tr>
<td>33</td>
<td>Tax rate on government consumption</td>
<td>TAXG_SS</td>
<td>0.0813</td>
</tr>
<tr>
<td>34</td>
<td>Tax wedge</td>
<td>TAUX_SS</td>
<td>0.1633</td>
</tr>
<tr>
<td>35</td>
<td>Transfers, share of GDP</td>
<td>TBAR_PY_SS</td>
<td>0.137</td>
</tr>
<tr>
<td>36</td>
<td>Transfers, share of GDP</td>
<td>TR_PY_SS</td>
<td>0.16</td>
</tr>
<tr>
<td>37</td>
<td>Constant in Ch equation</td>
<td>ZCH_SS</td>
<td>2.2346</td>
</tr>
<tr>
<td>38</td>
<td>Constant in Ih equation</td>
<td>ZIH_SS</td>
<td>2.0066</td>
</tr>
<tr>
<td>39</td>
<td>Constant in MA equation</td>
<td>ZMA_SS</td>
<td>8.5851</td>
</tr>
<tr>
<td>40</td>
<td>Constant in Pm_P equation</td>
<td>ZPM_P_SS</td>
<td>0.0073</td>
</tr>
<tr>
<td>41</td>
<td>Constant in RER equation</td>
<td>ZERR_SS</td>
<td>118.3615</td>
</tr>
<tr>
<td>42</td>
<td>Constant in Xh equation</td>
<td>ZHX_SS</td>
<td>2.0988</td>
</tr>
</tbody>
</table>

Note: "CH"/"IH"/"XH" = domestic produced consumption/investment/exports goods, "RER" = real exchange rate

Source: NIER.
2. New variables in the sticky-price model

KIMOD solves for the behaviour in both “reality”, with sticky prices (new-Keynesian economy), and in a world with flexible prices (neoclassical economy). One feature of KIMOD 1.0 was that the sticky price economy reacted very much the same as the flexible price economy to permanent shocks; i.e. the agents reacted too fast and too smart. This stems from the way the sticky price equations were written. This is now modified in KIMOD 2.0 and explained as follows.

In KIMOD 1.0, the equations describing sticky price behaviour were (a bit simplifying) written as:

\[X_t = X_{t-1} + dX_{t}^{FP} - (1 - \beta)(X_{t-1} - X_{t-1}^{FP}) + \gamma(Y_{t} - Y_{t}^{FP}) + \epsilon_{t}^{Temp}, \]

where \(X \) can be any endogenous variable of KIMOD, and \(dX_{t}^{FP} = X_{t}^{FP} - X_{t}^{FP} \) where “FP” stands for flexible prices. This equation says that this year’s value is equal to last year’s value, plus the annual change of the flex-price variable, plus an error correction term, plus the gap between the sticky price value and the flexible price value of other endogenous variables, plus, finally, an error term capturing temporary shocks only. The flexible price value, which is derived from robust economic theory, helps to explain the development of the sticky price behaviour.

The problem with this writing is that \(X_{t}^{FP} \) (as well as \(Y_{t}^{FP} \)) is included simultaneously. A permanent shock that shifts the flex-price value also shifts the sticky price values in the same period. However, we expect more “sluggishness” in the sticky price economy.

The solution is to use an “expectation” formulation. In KIMOD 2.0 the following equation form is used generically:

\[X_t = X_{t-1} + EdX_{t}^{FP} - (1 - \beta)(X_{t-1} - EX_{t-1}^{FP}) + \gamma(Y_{t} - EY_{t}^{FP}) + \epsilon_{t}^{Temp}, \]

where \(\begin{align*}
EdX_{t}^{FP} &= (1 - \eta_1 - \eta_2) dX_{t}^{FP} + \eta_1 dX_{t-1}^{FP} + \eta_2 dX_{t-2}^{FP} \\
EdX_{t-1}^{FP} &= (1 - \eta_2) dX_{t-1}^{FP} + \eta_2 dX_{t-2}^{FP} \\
EX_{t}^{FP} &= X_{t-1}^{FP} + EdX_{t-1}^{FP} + EdX_{t}^{FP} \\
EX_{t-1}^{FP} &= X_{t-2}^{FP} + EdX_{t-2}^{FP} + EdX_{t-1}^{FP}
\end{align*} \]

It is now the expected development with flexible prices that helps explaining the sticky price behaviour. The pros and cons of this specification are as follows:

Pros: First, we introduce a “handle”, the parameters \(\eta_1 \) and \(\eta_2 \), which enables us to control the amount of information that the economic agents are exposed to. Second, the agent’s reaction to permanent shocks is now more drawn-out and not as instantaneous and omniscient as before.

Cons: First, the number of variables increases substantially. Table 2 below shows new variables in the sticky-price model and the counterpart in the flex-price model. Second, a new equilibrium measure is introduced: “expected flex price equilibrium”.

Table 2

<table>
<thead>
<tr>
<th>Sticky Price Model</th>
<th>Flex Price Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_{t}^{FP})</td>
<td>(Y_{t}^{FP})</td>
</tr>
<tr>
<td>(EX_{t}^{FP})</td>
<td>(EX_{t}^{FP})</td>
</tr>
<tr>
<td>(EdX_{t}^{FP})</td>
<td>(EdX_{t}^{FP})</td>
</tr>
<tr>
<td>(EdX_{t-1}^{FP})</td>
<td>(EdX_{t-1}^{FP})</td>
</tr>
</tbody>
</table>
Table 2 New endogenous variables in the sticky price model

"Expectations" of the flex-price counterpart

<table>
<thead>
<tr>
<th>"Expectation" of:</th>
<th>Levels</th>
<th>Log differentials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sticky price</td>
<td>cf. Flex price</td>
</tr>
<tr>
<td>Productivity</td>
<td>AHE0FP_SP</td>
<td>AH_FP(0)</td>
</tr>
<tr>
<td></td>
<td>(current)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AHE1FP_SP</td>
<td>AH_FP(1)</td>
</tr>
<tr>
<td></td>
<td>(1 lead)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AHE2FP_SP</td>
<td>AH_FP(2)</td>
</tr>
<tr>
<td></td>
<td>(2 leads)</td>
<td></td>
</tr>
<tr>
<td>Net asset holdings, government</td>
<td>BGE0FP_SP</td>
<td>BG_FP(0)</td>
</tr>
<tr>
<td>Household consumption</td>
<td>DLC2EFP_SP</td>
<td>DLC_FP(-2)</td>
</tr>
<tr>
<td>Private investments</td>
<td>IP1EFP_SP</td>
<td>IP_FP(-1)</td>
</tr>
<tr>
<td></td>
<td>IP0EFP_SP</td>
<td>IP_FP(0)</td>
</tr>
<tr>
<td>Capital, private sector</td>
<td>KPE0FP_SP</td>
<td>KP_FP(0)</td>
</tr>
<tr>
<td></td>
<td>KPE1FP_SP</td>
<td>KP_FP(1)</td>
</tr>
<tr>
<td></td>
<td>KPE2FP_SP</td>
<td>KP_FP(2)</td>
</tr>
<tr>
<td>Hours worked, private sector</td>
<td>DLLHP2EFP_SP</td>
<td>DLLHP_FP(-2)</td>
</tr>
<tr>
<td>Average working hour, private</td>
<td>LHP_LP1EFP_SP</td>
<td>LHP_LP_FP(-1)</td>
</tr>
<tr>
<td>Labour supply</td>
<td>LS1EFP_SP</td>
<td>LS_FP(-1)</td>
</tr>
<tr>
<td>Price, consumption</td>
<td>PBC_P0EFP_SP</td>
<td>PBC_P_FP(0)</td>
</tr>
<tr>
<td></td>
<td>PBYG_P0EFP_SP</td>
<td>PBYG_P_FP(0)</td>
</tr>
<tr>
<td>Price, private production</td>
<td>PI_P0EFP_SP</td>
<td>PI_P_FP(0)</td>
</tr>
<tr>
<td>Price, imports</td>
<td>PM_P0EFP_SP</td>
<td>PM_P_FP(0)</td>
</tr>
<tr>
<td>Price, private value added</td>
<td>PX_P0EFP_SP</td>
<td>PX_P_FP(0)</td>
</tr>
<tr>
<td>Real exchange rate</td>
<td>RERE0FP_SP</td>
<td>RER_FP(0)</td>
</tr>
<tr>
<td></td>
<td>RERE1FP_SP</td>
<td>RER_FP(1)</td>
</tr>
<tr>
<td>Transfers from government</td>
<td>TRE0FP_SP</td>
<td>TR_FP(0)</td>
</tr>
<tr>
<td>Transfers to government</td>
<td>TRESTE0FP_SP</td>
<td>TREST_FP(0)</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>U_LS1EFP_SP</td>
<td>U_LS_FP(-1)</td>
</tr>
<tr>
<td></td>
<td>U_LSE0FP_SP</td>
<td>U_LS_FP(0)</td>
</tr>
<tr>
<td>Real wage</td>
<td>WPE0FP_SP</td>
<td>WP_FP(0)</td>
</tr>
<tr>
<td></td>
<td>WPE1FP_SP</td>
<td>WP_FP(1)</td>
</tr>
<tr>
<td></td>
<td>WPE2FP_SP</td>
<td>WP_FP(2)</td>
</tr>
<tr>
<td>Exports</td>
<td>X1EFP_SP</td>
<td>X_FP(-1)</td>
</tr>
<tr>
<td>GDP</td>
<td>YE0FP_SP</td>
<td>Y_FP(0)</td>
</tr>
<tr>
<td>Disposable income</td>
<td>DLYD1EFP_SP</td>
<td>DLYD_FP(-1)</td>
</tr>
<tr>
<td>Value added, private</td>
<td>YP2EFP_SP</td>
<td>YP_FP(-2)</td>
</tr>
<tr>
<td></td>
<td>YP1EFP_SP</td>
<td>YP_FP(-1)</td>
</tr>
<tr>
<td>Production, private</td>
<td>YPGE0FP_SP</td>
<td>YP_FP(0)</td>
</tr>
<tr>
<td></td>
<td>YPGE1FP_SP</td>
<td>YP_FP(1)</td>
</tr>
<tr>
<td></td>
<td>YPGE2FP_SP</td>
<td>YP_FP(2)</td>
</tr>
</tbody>
</table>

Note. Name syntax (cf. roman numerals; IV = 4, VI = 6):
"nEFP" – Expected value of flex-price counterpart, n no. of years back (lag), n = 1, 2;
"EnFP" – Expected value of flex-price counterpart, n no. of years ahead (lead), n = 0, 1, 2;
"E0FP" is suppressed for differentials.
3. Impulse-response analyses

In this chapter we investigate the dynamic properties of KIMOD 2.0, January 2009, compared to KIMOD 1.0 (Bergvall et al, 2007, ch. 5). Responses to five permanent and five temporary shocks are investigated. Diagrams are plotted in the Appendix. The bold lines in the figures correspond to the responses in KIMOD 2.0 and the thin lines to the “base”, which is KIMOD 1.0.

3.1 A permanent productivity shock

(See Appendix pp. 2-5.) The productivity level is permanently increased by one percent (fig. 5). The production possibilities increase, the individuals become richer and increase spending. In KIMOD 2.0 private consumption (fig. 18) responds much slowly than in the previous version of the model. The flex-price models respond almost immediately to the new equilibrium. However, the new sticky price model only responds with about 1/3 of the long-run effect the first year, but overreacts and overshoots the long-run level in year three. Higher productivity requires more capital. Investments (fig. 19) behave as private consumption, with a slow reaction at start, but it then overshoots much more. Exports (fig. 15) develop about similarly with sticky prices as with flexible prices. GDP (fig. 7) summarizes the demand side behaviour, with a slow reaction (KIMOD 2.0) under the first years, followed by overshooting. Since there is no endogenous effect on labour supply, the effects on unemployment and hours worked are modest (fig. 1, 2 and 3).

3.2 A permanent labour supply shock

(See Appendix pp. 6-9.) In the new version, KIMOD 2.0, the individuals do not in general internalize information from permanent shocks at once. Exceptions are made for variables “controlled” by the government, such as government consumption. The reason is that we don’t want to introduce uncertainty concerning fiscal policy. Exceptions are also made for labour supply, which is almost3 exogenous which would generate weird results if permanent shocks were smoothed. The differences in responses are thus relatively small between the versions of the model, and are caused mainly by the recalibration of steady state.

A permanent increase of the labour supply by 1 percent is fully appreciated after one year (fig. 1). Hours worked (fig. 3) reacts more slowly and unemployment in relative terms increases (fig. 2). The peak in the unemployment rate influences the consumption path, and explains the dip the second year (fig. 18).

3.3 A permanent change to the relative bargaining strength of workers

(See Appendix pp. 10-13.) The impulse in this experiment is to lower the bargaining strength of workers relatively employers, in the Nash-bargaining over wages. The real wage shrinks in the long run (fig. 11), the unemployment rate falls (fig. 2), and hours worked increases (fig. 3). More hours worked tend to increase the marginal productivity of capital. Hence, investments (fig. 19) and the

3 The labour supply depends only on its own lagged value, equilibrium development, an error correction term and a temporary shock. Hence, no simultaneous variables.
capital stock (fig. 4) increase in the long run. Total factor productivity is unaffected in the long run (fig. 5), but more capital and labour boost production (fig. 6) and GDP (fig. 7).

In KIMOD 2.0, terms of trade are almost unaffected in the long-run (fig. 14), due to recalibration of the real exchange rate equation. Moreover, the separation rate is much higher in the new version of the model (estimated from data) which is an important factor explaining the larger responses with KIMOD 2.0 compared to KIMOD 1.0 (see exports (fig. 15) and consumption (fig. 18)).

3.4 A permanent reduction in the target ratio of government debt to GDP

(See Appendix pp. 14-17.) This is a policy shock. The government decides to decrease the target debt to GDP ratio by one percentage point, that is, increase the net asset to GDP ratio (fig. 21). The ratio of net foreign assets to GDP increases and the real exchange rate appreciates (fig. 13). The elasticity to the real exchange rate is much lower in KIMOD 2.0, as compared to the older version of the model. The terms of trade effect is thus modest (fig. 14). The effects on exports (fig. 15), consumption (fig. 18), and investments (fig. 19) are smaller and, arguably, more realistic in the new version of the model.

3.5 A permanent negative shock to the inflation target

(See Appendix pp. 18-21.) What happens if the inflation target is lowered by one percentage point? It takes about three years to lower the actual inflation to the new target (fig. 9), which is much longer than in the previous version of the model. The change in nominal interest is about the same in the two models (fig. 12). The aim is to increase the real interest rate to dampen consumption and investments in the short run. There are no real effects in the long run, as we would expect.

3.6 A temporary nominal wage shock

(See Appendix pp. 22-25.) Nominal wage is one percent higher than expected for one year (fig 10). The response on prices is slower (fig. 9); therefore the real wage rate increases (fig. 11). Employment and hours worked decrease (fig. 2 and 3) and production falls. The central bank raises the interest rate (fig. 12) and demand falls after a while (fig. 7), which pushes production even further down. KIMOD 2.0 has a greater effect on consumption, compared to KIMOD 1.0. There is an initial positive effect on private consumption (fig. 18) in the new model due to a change in the timing of disposable income and consumption. The higher nominal wage now has a short positive effect on consumption, after which the higher interest rate and the higher unemployment ratio push consumption back.

3.7 A temporary shock to the exchange rate

(See Appendix pp. 26-29.) The nominal exchange rate depreciates by one percent (fig. 13). This causes terms of trade to fall (fig. 14), and exports increase more than imports (fig. 15, 16 and 17). The nominal exchange rate affects all prices, to the extent that the good is imported. In particular, imported investment goods become more expensive and capital formation weakens (fig. 19 and 4). The elasticity between the exchange rate and investment is higher in KIMOD 2.0 than in KIMOD
1.0. The magnitude of the effect on private consumption is small (fig. 18). The effect on net exports is higher than that on investments. The output gap becomes positive, as well as the inflation gap, and both nominal and real interest rate increase. The latter explains the major part of the fall in investment.

3.8 A temporary labour supply shock

(See Appendix pp. 30-33.) Labour supply is suddenly increased by one percent, without this been anticipated (fig. 1). There are only small initial positive effects on demand (fig. 7, 15, 18, 19, and 20). Private production (fig. 6) only increases by about 0.2 percent; hours worked (fig. 3) only by about 0.1 percent. Thus, unemployment (fig. 2) increases initially. This triggers a fall in wages (fig. 10 and 11) which lowers the inflation pressure (fig. 9) and the central bank is able to lower the interest rate. (Notice that the output gap and inflation gap work in different directions in this case (fig. 8).) This stimulates the economy and higher demand can bring back unemployment to the equilibrium level again and exploit the increased labour supply. Firms hire more people which encourage capital formation.

The dynamical effects on output (fig. 7) are smaller in KIMOD 2.0, as compared to KIMOD 1.0.

3.9 A temporary policy shock

(See Appendix pp. 34-37.) The central bank unexpectedly raises the interest rate by 0.5 percentage points, on annual basis (fig. 12). After this initial policy shock, the central bank returns to set the interest rate according to the policy rule. The shock dampens economic activity and inflation falls (fig. 9). The central bank therefore lowers the interest rate in order to bring inflation back to target. Disposable income initially falls and, in KIMOD 2.0, private consumption falls immediately (fig. 18). A higher real interest rate restricts capital formation (fig. 19 and 4), and pushes up the real exchange rate (fig. 13). This causes exports to fall (fig. 15).

The nominal exchange rate responds more rigorously than in KIMOD 1.0 which indicates more (negative) inflation pressure in the new version of the model. The magnitude of the response in consumption is about the same in the two models, whereas the response in investment is larger in KIMOD 2.0.

GDP falls (fig. 7 and 8), private production therefore falls by about 0.60 percent at most (fig. 6). This corresponds to a fall in hours worked (fig. 3) by about 0.35 percent.

3.10 A temporary demand shock

(See Appendix pp. 38-41.) Private consumption is increased by one percent for one period (fig. 18). Due to habit formation, consumption responds positively the second year but then starts to decline and returns to the old equilibrium path after three years. However, compared to KIMOD 1.0, the return is slower. Production is initially in equilibrium and cannot respond immediately to the increased demand; therefore most of the consumption is satisfied by imported goods and services (fig 16). Moreover, higher domestic demand lowers the possibilities of exporting goods and services (fig. 15). Net exports initially fall, with lower exports and higher imports (fig. 17). Resources are also reallocated from capital formation (fig. 19 and 4). Government consumption is unaffected by
temporary demand shocks (fig. 20). The negative responses of exports and investments are larger in KIMOD 2.0 than in KIMOD 1.0.

GDP (fig. 7) and private production (fig. 6) increases through a Keynesian multiplier mechanism. Private production initially increases by about 0.25 percent and hours worked by about 0.15 percent (fig. 3). Productivity therefore accounts for about 0.10 percent of the production increase. Unemployment (fig. 2) displays an initially perverse response in KIMOD 2.0, but the magnitude is low.

Temporary higher demand opens up a positive output gap (fig. 8), which means that inflation (fig. 9) and nominal wages (fig. 10) increase. The real wage decreases (fig. 11). To keep core inflation at its target rate, the central bank therefore raises the interest rate (fig. 12). A higher real interest rate implies an appreciated (lower) real exchange rate (fig. 13), which is consistent with the drop in exports (see above) and the higher terms-of-trade (fig. 14). A higher real interest also explains some of the response in investments.
References

Höglin, E. (2008), "KIMOD 1.0 vs. KIMOD 1.0.3", memo, NIER.

Appendix
KIMOD

impulse – response

Permanent shocks

1. 1 percent higher productivity (AH)
2. 1 percent higher labour supply (LS)
3. Lower bargain strength of workers (MY)
4. 1 percentage point lower government debt to GDP ratio (BG)
5. 1 percentage point lower inflation target (INFTAR)

Temporary shocks

6. 1 percent higher nominal wage (NW)
7. 1 percent depreciation of the nominal exchange rate (NER)
8. 1 percent higher labour supply (TLS)
9. 0.5 percentage points higher nominal interest rate (NR)
10. 1 percent higher private consumption (C)

Current model is KIMOD 2.0.0

“Base” is KIMOD 1.0

Document saved 2009-01-22 16:06.
1 Labour market (LS,LH)
Responses in percent

Source: NIER.

2 Unemployment (U_LS)
Responses in percentage points

Source: NIER.

3 Hours worked, private (LHP)
Responses in percent

Source: NIER.

4 Capital stock (KP)
Responses in percent

Source: NIER.

5 Productivity, TFP (AH)
Responses in percent

Source: NIER.

6 Production, private (YPG)
Responses in percent

Source: NIER.
13 Nominal & real exchange rate (NER, RER)
Responses in percent
Source: NIER.

14 Terms-of-trade (PX/PM)
Responses in percent
Source: NIER.

15 Exports (X)
Responses in percent
Source: NIER.

16 Imports (M)
Responses in percent
Source: NIER.

17 Net exports (XNET)
Responses in percent
Source: NIER.

18 Private consumption (C)
Responses in percent
Source: NIER.
19 Investment (I) Responses in percent

Source: NIER.

20 Government consumption (G) Responses in percent

Source: NIER.

21 Gov. assets to GDP ratio (BG/Y) Responses in percentage points

Source: NIER.

22 Consumption & investment, GDP ratios, current prices Responses in percentage points

Source: NIER.

23 Exports & imports, GDP ratios, current prices Responses in percentage points

Source: NIER.

24 Net exports & gov. consumpt., GDP ratios, current prices Responses in percentage points

Source: NIER.
1. **Labour market (LS, LH)**

Responses in percent

![Graph showing responses in percent for Labour market (LS, LH)]

Source: NIER.

2. **Unemployment (U_LS)**

Responses in percentage points

![Graph showing responses in percentage points for Unemployment (U_LS)]

Source: NIER.

3. **Hours worked, private (LHP)**

Responses in percent

![Graph showing responses in percent for Hours worked, private (LHP)]

Source: NIER.

4. **Capital stock (KP)**

Responses in percent

![Graph showing responses in percent for Capital stock (KP)]

Source: NIER.

5. **Productivity, TFP (AH)**

Responses in percent

![Graph showing responses in percent for Productivity, TFP (AH)]

Source: NIER.

6. **Production, private (YPG)**

Responses in percent

![Graph showing responses in percent for Production, private (YPG)]

Source: NIER.
19 Investment (I)
Responses in percent

Source: NIER.

20 Government consumption (G)
Responses in percent

Source: NIER.

21 Gov. assets to GDP ratio (BG/Y)
Responses in percentage points

Source: NIER.

22 Consumption & investment,
GDP ratios, current prices
Responses in percentage points

Source: NIER.

23 Exports & imports,
GDP ratios, current prices
Responses in percentage points

Source: NIER.

24 Net exports & gov. consumpt.,
GDP ratios, current prices
Responses in percentage points

Source: NIER.
1. Labour market (LS, LH)
Responses in percent

Labour supply — Hours worked
Labour supply (base) — Hours worked (base)

Source: NIER.

2. Unemployment (U_LS)
Responses in percentage points

Unemployment rate — Unemployment rate (base)

Source: NIER.

3. Hours worked, private (LHP)
Responses in percent

Sticky-price — Flex-price
Sticky-price (base) — Flex-price (base)

Source: NIER.

4. Capital stock (KP)
Responses in percent

Sticky-price — Flex-price
Sticky-price (base) — Flex-price (base)

Source: NIER.

5. Productivity, TFP (AH)
Responses in percent

Sticky-price — Flex-price
Sticky-price (base) — Flex-price (base)

Source: NIER.

6. Production, private (YPG)
Responses in percent

Sticky-price — Flex-price
Sticky-price (base) — Flex-price (base)

Source: NIER.
1 Labour market (LS,LH)
Responses in percent

Source: NIER.

2 Unemployment (U_LS)
Responses in percentage points

Source: NIER.

3 Hours worked, private (LHP)
Responses in percent

Source: NIER.

4 Capital stock (KP)
Responses in percent

Source: NIER.

5 Productivity, TFP (AH)
Responses in percent

Source: NIER.

6 Production, private (YPG)
Responses in percent

Source: NIER.
7 GDP, real (Y) Responses in percent

8 Output gap & core inflation Responses in percentage points

9 Inflation (CORE,P) Responses in percentage points

10 Nominal & real wage (NW, WP) Annual percentage change, responses

11 Real wage rate (WP) Responses in percent

12 Nominal & real interest rate (NR, R) Responses in percentage points

Source: NIER.
1 Labour market (LS,LH)
Responses in percent

Source: NIER.

2 Unemployment (U_LS)
Responses in percentage points

Source: NIER.

3 Hours worked, private (LHP)
Responses in percent

Source: NIER.

4 Capital stock (KP)
Responses in percent

Source: NIER.

5 Productivity, TFP (AH)
Responses in percent

Source: NIER.

6 Production, private (YPG)
Responses in percent

Source: NIER.
13 Nominal & real exchange rate (NER, RER)
Responses in percent

Source: NIER.

14 Terms-of-trade (PX/PM)
Responses in percent

Source: NIER.

15 Exports (X)
Responses in percent

Source: NIER.

16 Imports (M)
Responses in percent

Source: NIER.

17 Net exports (XNET)
Responses in percent

Source: NIER.

18 Private consumption (C)
Responses in percent

Source: NIER.
1. Labour market (LS, LH)
Responses in percent

- Labour supply
- Hours worked

Source: NIER.

2. Unemployment (U_LS)
Responses in percentage points

- Unemployment rate
- Unemployment rate (base)

Source: NIER.

3. Hours worked, private (LHP)
Responses in percent

- Sticky-price
- Flex-price

Source: NIER.

4. Capital stock (KP)
Responses in percent

- Sticky-price
- Flex-price

Source: NIER.

5. Productivity, TFP (AH)
Responses in percent

- Sticky-price
- Flex-price

Source: NIER.

6. Production, private (YPG)
Responses in percent

- Sticky-price
- Flex-price

Source: NIER.
1. Source: NIER.

2. GDP, real (Y)
 Responses in percent

3. Output gap & core inflation
 Responses in percentage points

4. Inflation (CORE,P)
 Responses in percentage points

5. Nominal & real wage (NW,WP)
 Annual percentage change, responses

6. Real wage rate (WP)
 Responses in percent

7. Nominal & real interest rate (NR,R)
 Responses in percentage points

8. Source: NIER.
13 Nominal & real exchange rate (NER, RER)
Responses in percent

14 Terms-of-trade (PX/PM)
Responses in percent

15 Exports (X)
Responses in percent

16 Imports (M)
Responses in percent

17 Net exports (XNET)
Responses in percent

18 Private consumption (C)
Responses in percent

Source: NIER.
1 Labour market (LS, LH) Responses in percent

2 Unemployment (U_LS) Responses in percentage points

3 Hours worked, private (LHP) Responses in percent

4 Capital stock (KP) Responses in percent

5 Productivity, TFP (AH) Responses in percent

6 Production, private (YPG) Responses in percent

Source: NIER.
13 Nominal & real exchange rate (NER,RER)
Responses in percent

Source: NIER.

14 Terms-of-trade (PX/PM)
Responses in percent

Source: NIER.

15 Exports (X)
Responses in percent

Source: NIER.

16 Imports (M)
Responses in percent

Source: NIER.

17 Net exports (XNET)
Responses in percent

Source: NIER.

18 Private consumption (C)
Responses in percent

Source: NIER.
1. **Labour market (LS, LH)**
 - Responses in percent
 - Labour supply
 - Hours worked
 - Labour supply (base)
 - Hours worked (base)
 Source: NIER.

2. **Unemployment (U_LS)**
 - Responses in percentage points
 - Unemployment rate
 - Unemployment rate (base)
 Source: NIER.

3. **Hours worked, private (LHP)**
 - Responses in percent
 - Sticky-price
 - Flex-price
 - Sticky-price (base)
 - Flex-price (base)
 Source: NIER.

4. **Capital stock (KP)**
 - Responses in percent
 - Sticky-price
 - Flex-price
 - Sticky-price (base)
 - Flex-price (base)
 Source: NIER.

5. **Productivity, TFP (AH)**
 - Responses in percent
 - Sticky-price
 - Flex-price
 - Sticky-price (base)
 - Flex-price (base)
 Source: NIER.

6. **Production, private (YPG)**
 - Responses in percent
 - Sticky-price
 - Flex-price
 - Sticky-price (base)
 - Flex-price (base)
 Source: NIER.
13 Nominal & real exchange rate (NER, RER) Responses in percent

Source: NIER.

14 Terms-of-trade (PX/PM) Responses in percent

Source: NIER.

15 Exports (X) Responses in percent

Source: NIER.

16 Imports (M) Responses in percent

Source: NIER.

17 Net exports (XNET) Responses in percent

Source: NIER.

18 Private consumption (C) Responses in percent

Source: NIER.
19 Investment (I)
Responses in percent

Source: NIER.

20 Government consumption
Responses in percent

Source: NIER.

21 Gov. assets to GDP ratio (BG/Y)
Responses in percentage points

Source: NIER.

22 Consumption & investment,
GDP ratios, current prices
Responses in percentage points

Source: NIER.

23 Exports & imports,
GDP ratios, current prices
Responses in percentage points

Source: NIER.

24 Net exports & gov. consumpt.,
GDP ratios, current prices
Responses in percentage points

Source: NIER.
1. Labour market (LS, LH)
 Responses in percent

2. Unemployment (U_LS)
 Responses in percentage points

3. Hours worked, private (LHP)
 Responses in percent

4. Capital stock (KP)
 Responses in percent

5. Productivity, TFP (AH)
 Responses in percent

6. Production, private (YPG)
 Responses in percent

Source: NIER.
13 Nominal & real exchange rate (NER, RER) Responses in percent

Source: NIER.

14 Terms-of-trade (PX/PM) Responses in percent

Source: NIER.

15 Exports (X) Responses in percent

Source: NIER.

16 Imports (M) Responses in percent

Source: NIER.

17 Net exports (XNET) Responses in percent

Source: NIER.

18 Private consumption (C) Responses in percent

Source: NIER.
1. Labour market (LS, LH)
Responses in percent

2. Unemployment (U_LS)
Responses in percentage points

3. Hours worked, private (LHP)
Responses in percent

4. Capital stock (KP)
Responses in percent

5. Productivity, TFP (AH)
Responses in percent

6. Production, private (YPG)
Responses in percent

Source: NIER.
7 GDP, real (Y) Responses in percent

Source: NIER.

8 Output gap & core inflation Responses in percentage points

Source: NIER.

9 Inflation (CORE,P) Responses in percentage points

Source: NIER.

10 Nominal & real wage (NW,WP) Annual percentage change, responses

Source: NIER.

11 Real wage rate (WP) Responses in percent

Source: NIER.

12 Nominal & real interest rate (NR,R) Responses in percentage points

Source: NIER.
Titles in the Working Paper Series

<table>
<thead>
<tr>
<th>No</th>
<th>Author</th>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Östblom, Göran</td>
<td>Change in Technical Structure of the Swedish Economy</td>
<td>1989</td>
</tr>
<tr>
<td>3</td>
<td>Söderling, Paul</td>
<td>Mamtax: A Dynamic CGE Model for Tax Reform Simulations</td>
<td>1989</td>
</tr>
<tr>
<td>4</td>
<td>Kanis, Alfred and Aleksander Markowski</td>
<td>The Supply Side of the Econometric Model of the NIER</td>
<td>1990</td>
</tr>
<tr>
<td>5</td>
<td>Berg, Lennart</td>
<td>The Financial Sector in the SNEPQ Model</td>
<td>1991</td>
</tr>
<tr>
<td>9</td>
<td>Jonsson, Bo and Anders Ågren</td>
<td>Forecasting Car Expenditures Using Household Survey Data</td>
<td>1992</td>
</tr>
<tr>
<td>10</td>
<td>Löfgren, Karl-Gustaf, Bo Ranneby and Sara Sjöstedt</td>
<td>Forecasting the Business Cycle Not Using Minimum Autocorrelation Factors</td>
<td>1992</td>
</tr>
<tr>
<td>11</td>
<td>Gerlach, Stefan</td>
<td>Current Quarter Forecasts of Swedish GNP Using Monthly Variables</td>
<td>1992</td>
</tr>
<tr>
<td>12</td>
<td>Bergström, Reinhold</td>
<td>The Relationship Between Manufacturing Production and Different Business Survey Series in Sweden</td>
<td>1992</td>
</tr>
<tr>
<td>13</td>
<td>Edlund, Per-Olov and Sune Karlsson</td>
<td>Forecasting the Swedish Unemployment Rate: VAR vs. Transfer Function Modelling</td>
<td>1992</td>
</tr>
<tr>
<td>14</td>
<td>Rahiala, Markku and Timo Teräsvirta</td>
<td>Business Survey Data in Forecasting the Output of Swedish and Finnish Metal and Engineering Industries: A Kalman Filter Approach</td>
<td>1992</td>
</tr>
<tr>
<td>16</td>
<td>Jonsson, Bo</td>
<td>Sample Based Proportions as Values on an Independent Variable in a Regression Model</td>
<td>1992</td>
</tr>
<tr>
<td>17</td>
<td>Öller, Lars-Erik</td>
<td>Eliciting Turning Point Warnings from Business Surveys</td>
<td>1992</td>
</tr>
<tr>
<td>18</td>
<td>Forster, Margaret M</td>
<td>Volatility, Trading Mechanisms and International Cross-Listing</td>
<td>1992</td>
</tr>
<tr>
<td>19</td>
<td>Jonsson, Bo</td>
<td>Prediction with a Linear Regression Model and Errors in a Regressor</td>
<td>1992</td>
</tr>
<tr>
<td>20</td>
<td>Gorton, Gary and Richard Rosen</td>
<td>Corporate Control, Portfolio Choice, and the Decline of Banking</td>
<td>1993</td>
</tr>
<tr>
<td>21</td>
<td>Gustafsson, Claes-Håkan and Åke Holmén</td>
<td>The Index of Industrial Production – A Formal Description of the Process Behind it</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Author(s)</td>
<td>Title</td>
<td>Year</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>23</td>
<td>Jonsson, Bo</td>
<td>Forecasting Car Expenditures Using Household Survey Data- A Comparison of Different Predictors</td>
<td>1993</td>
</tr>
<tr>
<td>24</td>
<td>Gennotte, Gerard and Hayne Leland</td>
<td>Low Margins, Derivative Securities and Volatility</td>
<td>1993</td>
</tr>
<tr>
<td>25</td>
<td>Boot, Arnoud W.A. and Stuart I. Greenbaum</td>
<td>Discretion in the Regulation of U.S. Banking</td>
<td>1993</td>
</tr>
<tr>
<td>26</td>
<td>Spiegel, Matthew and Deane J. Seppi</td>
<td>Does Round-the-Clock Trading Result in Pareto Improvements?</td>
<td>1993</td>
</tr>
<tr>
<td>27</td>
<td>Seppi, Deane J.</td>
<td>How Important are Block Trades in the Price Discovery Process?</td>
<td>1993</td>
</tr>
<tr>
<td>28</td>
<td>Glosten, Lawrence R.</td>
<td>Equilibrium in an Electronic Open Limit Order Book</td>
<td>1993</td>
</tr>
<tr>
<td>29</td>
<td>Boot, Arnoud W.A., Stuart I. Greenbaum and Anjan V. Thakor</td>
<td>Reputation and Discretion in Financial Contracting</td>
<td>1993</td>
</tr>
<tr>
<td>30a</td>
<td>Bergström, Reinhold</td>
<td>The Full Tricotomous Scale Compared with Net Balances in Qualitative Business Survey Data – Experiences from the Swedish Business Tendency Surveys</td>
<td>1993</td>
</tr>
<tr>
<td>30b</td>
<td>Bergström, Reinhold</td>
<td>Quantitative Production Series Compared with Qualitative Business Survey Series for Five Sectors of the Swedish Manufacturing Industry</td>
<td>1993</td>
</tr>
<tr>
<td>31</td>
<td>Lin, Chien-Fu Jeff and Timo Teräsvirta</td>
<td>Testing the Constancy of Regression Parameters Against Continuous Change</td>
<td>1993</td>
</tr>
<tr>
<td>32</td>
<td>Markowski, Aleksander and Parameswar Nandakumar</td>
<td>A Long-Run Equilibrium Model for Sweden. The Theory Behind the Long-Run Solution to the Econometric Model KOSMOS</td>
<td>1993</td>
</tr>
<tr>
<td>33</td>
<td>Markowski, Aleksander and Tony Persson</td>
<td>Capital Rental Cost and the Adjustment for the Effects of the Investment Fund System in the Econometric Model Kosmos</td>
<td>1993</td>
</tr>
<tr>
<td>34</td>
<td>Kanis, Alfred and Bharat Barot</td>
<td>On Determinants of Private Consumption in Sweden</td>
<td>1993</td>
</tr>
<tr>
<td>37</td>
<td>Markowski, Aleksander and Lars Ernsäter</td>
<td>The Supply Side in the Econometric Model KOSMOS</td>
<td>1994</td>
</tr>
<tr>
<td>38</td>
<td>Gustafsson, Claes-Häkan</td>
<td>On the Consistency of Data on Production, Deliveries, and Inventories in the Swedish Manufacturing Industry</td>
<td>1994</td>
</tr>
<tr>
<td>39</td>
<td>Rahiala, Markku and Tapani Kovalainen</td>
<td>Modelling Wages Subject to Both Contracted Increments and Drift by Means of a Simultaneous-Equations Model with Non-Standard Error Structure</td>
<td>1994</td>
</tr>
<tr>
<td>No.</td>
<td>Author(s)</td>
<td>Title</td>
<td>Year</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>40</td>
<td>Öller, Lars-Erik and Christer Tallbom</td>
<td>Hybrid Indicators for the Swedish Economy Based on Noisy Statistical Data and the Business Tendency Survey</td>
<td>1994</td>
</tr>
<tr>
<td>41</td>
<td>Östblom, Göran</td>
<td>A Converging Triangularization Algorithm and the Intertemporal Similarity of Production Structures</td>
<td>1994</td>
</tr>
<tr>
<td>42a</td>
<td>Markowski, Aleksander</td>
<td>Labour Supply, Hours Worked and Unemployment in the Econometric Model KOSMOS</td>
<td>1994</td>
</tr>
<tr>
<td>42b</td>
<td>Markowski, Aleksander</td>
<td>Wage Rate Determination in the Econometric Model KOSMOS</td>
<td>1994</td>
</tr>
<tr>
<td>43</td>
<td>Ahlroth, Sofia, Anders Björklund and Anders Forslund</td>
<td>The Output of the Swedish Education Sector</td>
<td>1994</td>
</tr>
<tr>
<td>44a</td>
<td>Markowski, Aleksander</td>
<td>Private Consumption Expenditure in the Econometric Model KOSMOS</td>
<td>1994</td>
</tr>
<tr>
<td>44b</td>
<td>Markowski, Aleksander</td>
<td>The Input-Output Core: Determination of Inventory Investment and Other Business Output in the Econometric Model KOSMOS</td>
<td>1994</td>
</tr>
<tr>
<td>45</td>
<td>Bergström, Reinhold</td>
<td>The Accuracy of the Swedish National Budget Forecasts 1955-92</td>
<td>1995</td>
</tr>
<tr>
<td>46</td>
<td>Sjöö, Boo</td>
<td>Dynamic Adjustment and Long-Run Economic Stability</td>
<td>1995</td>
</tr>
<tr>
<td>47a</td>
<td>Markowski, Aleksander</td>
<td>Determination of the Effective Exchange Rate in the Econometric Model KOSMOS</td>
<td>1995</td>
</tr>
<tr>
<td>47b</td>
<td>Markowski, Aleksander</td>
<td>Interest Rate Determination in the Econometric Model KOSMOS</td>
<td>1995</td>
</tr>
<tr>
<td>48</td>
<td>Barot, Bharat</td>
<td>Estimating the Effects of Wealth, Interest Rates and Unemployment on Private Consumption in Sweden</td>
<td>1995</td>
</tr>
<tr>
<td>49</td>
<td>Lundvik, Petter</td>
<td>Generational Accounting in a Small Open Economy</td>
<td>1996</td>
</tr>
<tr>
<td>50</td>
<td>Eriksson, Kimmo, Johan Karlander and Lars-Erik Öller</td>
<td>Hierarchical Assignments: Stability and Fairness</td>
<td>1996</td>
</tr>
<tr>
<td>51</td>
<td>Url, Thomas</td>
<td>Internationalists, Regionalists, or Eurocentrists</td>
<td>1996</td>
</tr>
<tr>
<td>52</td>
<td>Ruist, Erik</td>
<td>Temporal Aggregation of an Econometric Equation</td>
<td>1996</td>
</tr>
<tr>
<td>53</td>
<td>Markowski, Aleksander</td>
<td>The Financial Block in the Econometric Model KOSMOS</td>
<td>1996</td>
</tr>
<tr>
<td>54</td>
<td>Östblom, Göran</td>
<td>Emissions to the Air and the Allocation of GDP: Medium Term Projections for Sweden. In Conflict with the Goals of SO2, SO2 and NOX Emissions for Year 2000</td>
<td>1996</td>
</tr>
<tr>
<td>55</td>
<td>Koskinen, Lasse, Aleksander Markowski, Parameswar Nandakumar and Lars-Erik Öller</td>
<td>Three Seminar Papers on Output Gap</td>
<td>1997</td>
</tr>
<tr>
<td>56</td>
<td>Oke, Timothy and Lars-Erik Öller</td>
<td>Testing for Short Memory in a VARMA Process</td>
<td>1997</td>
</tr>
<tr>
<td>Page</td>
<td>Authors</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Lyhagen, Johan</td>
<td>The Effect of Precautionary Saving on Consumption in Sweden</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Koskinen, Lasse and Lars-Erik Öller</td>
<td>A Hidden Markov Model as a Dynamic Bayesian Classifier, with an Application to Forecasting Business-Cycle Turning Points</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Kragh, Börje and Aleksander Markowski</td>
<td>Kofi – a Macromodel of the Swedish Financial Markets</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Gajda, Jan B. and Aleksander Markowski</td>
<td>Model Evaluation Using Stochastic Simulations: The Case of the Econometric Model KOSMOS</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Johansson, Kerstin</td>
<td>Exports in the Econometric Model KOSMOS</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Johansson, Kerstin</td>
<td>Permanent Shocks and Spillovers: A Sectoral Approach Using a Structural VAR</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Öller, Lars-Erik and Bharat Barot</td>
<td>Comparing the Accuracy of European GDP Forecasts</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Huhtala, Anni and Eva Samakovlis</td>
<td>Does International Harmonization of Environmental Policy Instruments Make Economic Sense? The Case of Paper Recycling in Europe</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Nilsson, Charlotte</td>
<td>A Unilateral Versus a Multilateral Carbon Dioxide Tax - A Numerical Analysis With The European Model GEM-E3</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Braconier, Henrik and Steinar Holden</td>
<td>The Public Budget Balance – Fiscal Indicators and Cyclical Sensitivity in the Nordic Countries</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Nilsson, Kristian</td>
<td>Alternative Measures of the Swedish Real Exchange Rate</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Östblom, Göran</td>
<td>An Environmental Medium Term Economic Model – EMEC</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Johansson, Helena and Peter Kaplan</td>
<td>An Econometric Study of Private Consumption Expenditure in Sweden</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Öller, Lars-Erik and Bharat Barot</td>
<td>The Accuracy of European Growth and Inflation Forecasts</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Ahlroth, Sofia</td>
<td>Correcting Net Domestic Product for Sulphur Dioxide and Nitrogen Oxide Emissions: Implementation of a Theoretical Model in Practice</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Andersson, Michael K. And Mikael P. Gredenhoff</td>
<td>Improving Fractional Integration Tests with Bootstrap Distribution</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Nilsson, Charlotte and Anni Huhtala</td>
<td>Is CO₂ Trading Always Beneficial? A CGE-Model Analysis on Secondary Environmental Benefits</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Skånberg, Kristian</td>
<td>Constructing a Partially Environmentally Adjusted Net Domestic Product for Sweden 1993 and 1997</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Huhtala, Anni, Annie Toppinen and Mattias Boman,</td>
<td>An Environmental Accountant’s Dilemma: Are Stumpage Prices Reliable Indicators of Resource Scarcity?</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Nilsson, Kristian</td>
<td>Do Fundamentals Explain the Behavior of the Real Effective Exchange Rate?</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Bharat, Barot</td>
<td>Growth and Business Cycles for the Swedish Economy</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Bharat, Barot</td>
<td>House Prices and Housing Investment in Sweden and</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Author(s)</td>
<td>Title</td>
<td>Year</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>81</td>
<td>Hjelm, Göran</td>
<td>Simultaneous Determination of NAIRU, Output Gaps and Structural Budget Balances: Swedish Evidence</td>
<td>2003</td>
</tr>
<tr>
<td>82</td>
<td>Huhtala, Anni and Eva Samakovlis</td>
<td>Green Accounting, Air Pollution and Health</td>
<td>2003</td>
</tr>
<tr>
<td>83</td>
<td>Lindström, Tomas</td>
<td>The Role of High-Tech Capital Formation for Swedish Productivity Growth</td>
<td>2003</td>
</tr>
<tr>
<td>84</td>
<td>Hansson, Jesper, Per Jansson and Märten Löf</td>
<td>Business survey data: do they help in forecasting the macro economy?</td>
<td>2003</td>
</tr>
<tr>
<td>86</td>
<td>Gren, Ing-Marie</td>
<td>Monetary Green Accounting and Ecosystem Services</td>
<td>2003</td>
</tr>
<tr>
<td>87</td>
<td>Samakovlis, Eva, Anni Huhtala, Tom Bellander and Magnus Svartengren</td>
<td>Air Quality and Morbidity: Concentration-response Relationships for Sweden</td>
<td>2004</td>
</tr>
<tr>
<td>88</td>
<td>Alsterlind, Jan, Alek Markowski and Kristian Nilsson</td>
<td>Modelling the Foreign Sector in a Macroeconometric Model of Sweden</td>
<td>2004</td>
</tr>
<tr>
<td>89</td>
<td>Lindén, Johan</td>
<td>The Labor Market in KIMOD</td>
<td>2004</td>
</tr>
<tr>
<td>90</td>
<td>Braconier, Henrik and Tomas Forsfält</td>
<td>A New Method for Constructing a Cyclically Adjusted Budget Balance: the Case of Sweden</td>
<td>2004</td>
</tr>
<tr>
<td>91</td>
<td>Hansen, Sten and Tomas Lindström</td>
<td>Is Rising Returns to Scale a Figment of Poor Data?</td>
<td>2004</td>
</tr>
<tr>
<td>92</td>
<td>Hjelm, Göran</td>
<td>When Are Fiscal Contractions Successful? Lessons for Countries Within and Outside the EMU</td>
<td>2004</td>
</tr>
<tr>
<td>93</td>
<td>Östblom, Göran and Samakovlis, Eva</td>
<td>Costs of Climate Policy when Pollution Affects Health and Labour Productivity. A General Equilibrium Analysis Applied to Sweden</td>
<td>2004</td>
</tr>
<tr>
<td>94</td>
<td>Forslund Johanna, Eva Samakovlis and Maria Vredin Johansson</td>
<td>Matters Risk? The Allocation of Government Subsidies for Remediation of Contaminated Sites under the Local Investment Programme</td>
<td>2006</td>
</tr>
<tr>
<td>95</td>
<td>Erlandsson Mattias and Alek Markowski</td>
<td>The Effective Exchange Rate Index KIX - Theory and Practice</td>
<td>2006</td>
</tr>
<tr>
<td>96</td>
<td>Östablom Göran and Charlotte Berg</td>
<td>The EMEC model: Version 2.0</td>
<td>2006</td>
</tr>
<tr>
<td>97</td>
<td>Hammar, Henrik, Tommy Lundgren and Magnus Sjöström</td>
<td>The significance of transport costs in the Swedish forest industry</td>
<td>2006</td>
</tr>
<tr>
<td>98</td>
<td>Barot, Bharat</td>
<td>Empirical Studies in Consumption, House Prices and the Accuracy of European Growth and Inflation Forecasts</td>
<td>2006</td>
</tr>
<tr>
<td>#</td>
<td>Authors</td>
<td>Title</td>
<td>Year</td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>99</td>
<td>Hjelm, Göran</td>
<td>Kan arbetsmarknadens parter minska jämviktsarbetslösheten? Teori och modellsimuleringar</td>
<td>2006</td>
</tr>
<tr>
<td>100</td>
<td>Bergvall, Anders, Tomas Forsfält, Göran Hjelm, Jonny Nilsson and Juhana Vartiainen</td>
<td>KIMOD 1.0 Documentation of NIER’s Dynamic Macroeconomic General Equilibrium Model of the Swedish Economy</td>
<td>2007</td>
</tr>
<tr>
<td>102</td>
<td>Hammar, Henrik and Åsa Löfgren</td>
<td>Explaining adoption of end of pipe solutions and clean technologies – Determinants of firms’ investments for reducing emissions to air in four sectors in Sweden</td>
<td>2007</td>
</tr>
<tr>
<td>103</td>
<td>Östblom, Göran and Henrik Hammar</td>
<td>Outcomes of a Swedish Kilometre Tax. An Analysis of Economic Effects and Effects on NOx Emissions</td>
<td>2007</td>
</tr>
<tr>
<td>104</td>
<td>Forsfält, Tomas, Johnny Nilsson and Juhana Vartianinen</td>
<td>Modellansatser i Konjunkturinstitutets medelfristprognoser</td>
<td>2008</td>
</tr>
<tr>
<td>105</td>
<td>Samakovlis, Eva</td>
<td>How are Green National Accounts Produced in Practice?</td>
<td>2008</td>
</tr>
<tr>
<td>107</td>
<td>Forslund, Johanna, Per Johansson, Eva Samakovlis and Maria Vredin Johansson</td>
<td>Can we by time? Evaluation. Evaluation of the government’s directed grant to remediation in Sweden</td>
<td>2009</td>
</tr>
<tr>
<td>109</td>
<td>Sjöström, Magnus and Göran Östblom</td>
<td>Future Waste Scenarios for Sweden on the Basis of a CGE-model</td>
<td>2009</td>
</tr>
<tr>
<td>110</td>
<td>Österholm, Pär</td>
<td>The Effect on the Swedish Real Economy of the Financial Crisis</td>
<td>2009</td>
</tr>
</tbody>
</table>