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Abstract

We study a simple model assigning workers to employers, where each
pair of a worker and an employer has a potential joint productivity, and
the complete information about the market is contained in the matrix of
potential productivities.

Under certain conditions that we specify, the market is hierarchical,
in the sense that both workers and employers can be ordered according
to ability, and the Pareto optimal assignment in terms of maximal total
productivity is achieved by matching the top worker with the top employer
and so on. In other words, we describe a market situation in which the
above simple matching procedure is optimal.

Some further properties of hierarchies are presented. We can state ex-
plicit values for the earnings in the worker optimal and employer optimal
solutions. We further show that our hierarchy concept is a discrete ana-
logue to the Ricardian differential rent model of Sattinger (1979), and that
the latter one can easily be derived from our model.

We discuss the compatibility problems between fairness and stability of
earnings and assignments. In particular, two notions of fairness that seem
sensible in general fail to be stable in hierarchical markets. First, pairwise

sharing the Pareto optimal product using a fixed sharing rule generates
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stable assignments only under a very restrictive assumption. Second, dis-
tributing the same amount to all workers preserves stability only in the
extreme situation of an equal distribution of ability among workers. A
uniform distribution of ability will always generate a smaller overall pro-
duction than an uneven distribution in Pareto optimum. We argue for
another notion of fairness that turns out to be stable: an average between
the worker optimal and employer optimal solutions.

The model can be used to illustrate imperfect competition, economic

growth and corruption.



1 Introduction

Most of economic science is about relations between aggregates, and the indi-
vidual is portrayed as the typical consumer, producer. worker. employer, etc.
However, one area where ordering of individuals is crucial is welfare econormnics,
where a tool of analysis is obtained from ordering individuals according to their
income into an income distribution.

Economic welfare can be said to rest on two fundaments: income should
be distributed as evenly as possible (egalité), and everyone should have equal
opportunity to 'make it’.

Obviously these principles are contradictory. Just one person making a career
destroys the static equal income requirement. A compromise between these two
would be an income distribution with few, if any, poor people, a large group of
people having more or less the same income, and then a fat tail to the right of
individuals who have made careers of varving success. But this is very much the
profile of many developed countries. A variety of options for living up to one’s
special abilities may in fact be an explanation to growth, that is, 2 movement from
a mass of almost equally poor, to varying degrees of prosperity, the successful
eventually pulling those who remained behind, away from poverty.

In Tinbergen (1959), specialization has a final steady state of equal income,
because there would be a perfect matching between supply and demand for the
whole spectrum of abilities. Although Gini coefficients have increased over a
long time in developed countries, Tinbergen’s thesis seems rather utopian. In
a recent paper, Lindbeck and Snower (1996) present a theoretical argument for
a development towards what they call a holistic economy, and away from what
they regard as a Tayloristic division of labour. In the post-industrial society,
versatility, and general intelligence are in higher demand than very specialised
abilities that require approximately the same amount of natural talent, and this

leads to more inequality in income, not less. There is also an old and strong force



working against an even distribution of income across individuals. In his classical
works, Roy (1950, 1951) presents some evidence that abilities in a person tend to
get multiplied, rather than added, in the production process. Even if both were
symmetrically distributed, multiplication would result in a skew distribution of
output, and hence earnings, cf. also Cramér (1945, p. 220).

Another field of research where ordering of individuals is common is in the
economics of the organisation, where little can be explained without the con-
cept of hierarchy. Furthermore, the old problem of assigning plants to locations
(Koopmans and Beckmann,1957) has found new adherants in game theorists,
studying matching problems between men and women, or workers and employers
(Roth and Sotomayor, 1990).

Here we will present a very simple model assigning workers to employers. We
assume that both workers and employers can be ordered according to ability.
A worker’s ability is measured as the amount of work he/she can accomplish
that the employer can seil in a market. The employers can in turn be ordered
according to the price at which they can sell their workers’ products. Their
joint accomplishment is the product of the two abilities. All possible assignments
of workers to employers form an assignment matrix which can be so organised
that its trace signifies the Pareto optimal production. We then present a simple
algorithm for obtaining this solution — matching the top worker with the top
employer, etc. We also generalise the abilities of the agents by allowing ability
vectors. However, we still assume that the tasks to be performed by workers and
marketed by employers are homogeneous; we don't study the assignment across
different jobs, anaiysed e.g. by Rosen (1978). For an excellent survey article on
assignment models, cf. Sattinger (1993).

This paper is organised as follows. In Section 2 we start by axiomatically
defining an n xn hierarchical matrix. We then show that such a matrix will always

imply that abilities can be ordered, and that the Pareto optimal assignment is



obtained by matching the top worker to the top employer and so on. Next, we
give examples of hierarchies and show some properties of hierarchies. We can
state explicit values for the earnings in the worker optimal and employer optimal
solutions. We further show that our hierarchy concept is a discrete analogue to
the Ricardian differential rent model of Sattinger (1979), and that the latter one
can easily be derived from our model.

In Section 3 we look at economic implications of our model, regarding the
compatibility between fairness and stability of earnings and assignments. In par-
ticular, two notions of fairness that seem sensible fail to be stable in general in
hierarchical markets. First, pairwise sharing the Pareto optimal product using a
fixed sharing rule generates stable assignments only under a very restrictive as-
sumption. Second, distributing the same amount to all workers preserves stability
only in the extreme situation of an equal distribution of ability among workers. A
uniform distribution of ability will always generate a smaller overall production
than an uneven distribution in Pareto optimum. We argue for another notion of
fairness that turns out to be stable: an average between the worker optimal and
employer optimal solutions.

The fourth section concludes with an argument for the evolution of hierarchy-
like markets, and discusses possible uses of our model. By letting agents improve
on their abilities one can model a growing economy, where growth is generated by
individuals becoming more productive and by the boost from their careers. We
sketch a simple way of introducing imperfect information. With rational agents
and free markets there is no room for a discriminating coalition if all agree on a
sharing rule. However, this simple model offers a tool for analysing what happens
if these assumptions are not satisfied. If the sharing rule is chosen according to
a democratic voting, there is a majority that would like an even distribution of
earnings between workers. A corrupt economic system can be contrasted against

the fair and Pareto optimal assignments.



2 Mathematical results
2.1 The assignment game

We start by recalling the assignment model of Shapley and Shubik (1972). Let
{p1,....Pa} be a set of workers and {q1,.... ¢} a set of employers. A matching of
workers p; to employer g; is denoted by p; + g;. Every pair p;, ¢; has a potential
productivity a;;.

The problem is to find an optimal assignment, i.e. the one that yields maximal
total productivity. If we have a matched pair pi < ¢;, its productivity a;; is
distributed as payoff u; to worker p; and v; = aij — u; to employer g;. An
outcome is an assignment combined with a payoff. The outcome is stable if it
is individually rational (no payoffs are negative) and if it contains no “blocking
pairs” of agents that are not matched but who both have an incentive to disrupt
their current matches in order to join each other instead. It is well-known that
stable outcomes must be Pareto optimal, i.e. the underiying assignment must
be optimal, and that no side payments wiil occur. Therefore, if the agents are
numbered such that p; < qi,..., Pn +* ¢, is an optimal assignment, the stable

outcomes are given by the payoff vectors @ and ¥ that satisfy:
w>0, v>0, u+v=ai u+v;>a;forall,j.

2.1.1 Hierarchies

The problem of finding optimal assignments and stable outcomes is relatively
complicated. Hence it might be interesting to consider special situations where
the solution is easier to come by. We will now discuss a situation that we will
call a “hierarchy”, in which there is a natural order (rank) of the P-agents and
(Q-agents, respectively. The optimal assignment can the be found in a trivial way.
Moreover, we present simple explicit expressions for stable payoffs, and we will

be able to give an intuitively natural definition of a “fair” outcome.



Let us begin by describing a simple but important special case of a hierarchy,
where there exists some measure of competence of workers, ¢ < g; < ... < gn,
and of employers, k; < ky £ ... < ky, such that the potential productivity of

matching worker p; to employer g; is given by the product of competences:
aij = gik;.

For this case, it is easy to see that the optimal assignment is to match the most
competent worker p,, to the most competent employer g,,, worker p,_; to employer
gn-1 and so on. This would also hold if e.g. the productivity would be given by
the Cobb-Douglas formula: a;; = Ag?k}', where A, 3, v are positive parameters
with B+ > 1.

Compare this with the case of a general matrix (a;;) of rank r, which can

always be factorized (in multiple ways) as the product of an n x r-matrix (gif)

and an r x n-matrix (k). This can be interpreted as each worker p; having a

competence vector §; = (g1,.... ), and each employer ¢; having a competence
vector k; = {ky;,.... krj), where the joint productivity is the scalar product:
aij = gi - kj.

In an attempt to mimic the rank one case above, one might order workers and
employers by increasing norm of their competence vectors: {§;| < ... < |§a| and
|k1] < ... < |kn|. However, in this general case we cannot guarantee that the
optimal assignment will be obtained by matching agents according to their order.

Our concept of hierarchy describes certain matrices (a;;) such that there is an
intrinsically natural ordering of the agents, and such that matching agents with

respect to this ordering produces the optimal assignment.

2.1.2 Definition of a hierarchy

The matrix (o;) of potential productivities is a hierarchy if the following two

conditions are satisfied for all indices between 1 and n:



1. If 7 < k then aij < ai and aj; < ag.

2. Ifi <k and 7 < £ then ay + Qg < Qi + Qg

In a hierarchy there is an ordering py,....p, of the P-agents, and an ordering
q1y.-.,gn of the Q-agents, that qualitatively measure competence. Condition 1
says that every P-agent will be better off cooperating with a high-ranked Q-agent
than with a low-ranked one, and vice versa. Condition 2 says that given a local
situation of two P-agents and two (Q-agents, the optimal assignment of these
is for the high-ranked agents to match with each other, and the low-ranked to
match with each other.

It is an easy exercise to verify that the hierarchy conditions can equivalently

be formulated using only local comparisons:
L aij € aij41 and o5 < ajya ;e

2. @ijp1 t @igry S @+ Qg

2.1.3 Examples of hierarchies

We shall now present some simple hierarchies (leaving the easy verifications to the
reader). The first example is the one mentioned earlier; if there is some measure of
competence of workers, g; < g; <... < g,, and of employers, k; < k2 < ... < ky,,
then the productivity matrix given by a;; = g;k; is a hierarchy. Obviously, the
same holds if the potential productivity is o;; = a(g;)b(k;) for any monotonic
increasing functions a(g) and b(k).

A trivial kind of hierarchy is obtained by e;; = g; + k;. More generally, taking
aij = f(gi, k;)

we will always get a hierarchy for any twice differentiable function f(g, k) satis-

fying
af af o f
Hoeg L =B,
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We will consider this type of structure in Section 2.2.
Note that differentiability of f(g, k) is not a necessary condition for a hierar-

chy; e.g. the famous Leontief function @;; = min(g;, k;) produces a hierarchy.

Remark 1: Artificial competences. All the examples given above depend
on given competences g; and k;. It might be interesting to note that any hierarchy
allows us to canonically define an ordering of the agents, and this ordering can

be perceived as an artifical measure of the competence of agents.

Remark 2: Hierarchies and factorized productivity matrices. If (a;;)
is factorized as (g,)(k;)7, the conditions for being a hierarchy translate to the

following set of inequalities of scalar products:

L i+ (kjy1 — ;) > 0 and (giyy — @) k; > 0.
2. (Givr — 30) - (ki = k) > 0.

A sufficient (but by no means necessary) condition for these inequalities to be

satisfied is of course that §;,; and kj+1 are componentwise greater than §; and

k; respectively.

2.1.4 Properties of hierarchies

Let us now prove the claimed property of hierachies, that the optimal assignment

respects the hierarchic order. As it turns out, for this property only the second

hierarchy condition is necessary.

Proposition 2.1 Given a hierarchy, the opiimal assignment is that p; cooperates
with q; for all i between 1 and n, and hence the optimal productivity is ay, + g0+

sl O

ProOOF. To prove this, we must show that no other assignment can give higher

total productivity. Suppose there is one. Then there is some such assignment
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with maximal ¢, where ¢ is defined as the least index such that p; is matched to
q¢ for some £ > 7, and hence ¢; is matched to p; for some j > i. But by the

hierarchy assumption, Condition 2, we have

it + a5 < a +oage

and hence by matching p; to ¢; and p; to g we can change the assignment to
one with at least as great total productivity, but with larger i, contradicting the
maximality assumption.
=
The above result can be restated in mathematical terms as follows: being a
hierarchy is a sufficient condition on a matrix for the trace being the largest sum
that can be formed by choosing one element from each row and column.
Moreover, we claim that independently of which stable outcome we have cho-
sen, the payoffs will mirror the hierarchy. In other words, the hierarchy is also a

payoff hierarchy. Here the first hierarchy condition is crucial.

Proposition 2.2 [n a hierarchy, the payoff vectors @ and © will in every stable

outcome satisfyu; <up < ... <ty andv; < vy <... < v,.

PRrROOF. Suppose that the payoff vectors u and ¢ yield a stable outcome (together
with the assignment of p; to ¢; for every i between 1 and n). It is known that
in stable outcomes there are no side payments, so u; + v; = ay; for all i. Also,

stability implies u; + v; > a;; for all 7, j. Now suppose that i > j. We have

u; + v > Qi = Ui+ Qg — U 20 T U — U Za‘-,-—a,-_,-,
and a;; — «j; is nonnegative by the first hierarchy condition. Hence u; > u;. In
a similar way we get v; > v;.

A further advantage with hierarchies is that they let us state explicit expres-

sions for certain stable outcomes. Shapley and Shubik (1972) showed that the
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set of stable outcomes form a lattice with a unique Q-optimal outcome. Any
other stable outcome is worse for every Q-agent. Dually, there is also a unique
P-optimal outcome, which is the best achievable by all P-agents among the stable
outcomes. We can explicitly compute these optimal outcomes for a hierarchy.
The key observation is the one made in the proof above. that the payoffs must
satisfy
Uigl = Ui 2 Qg1 — Qi (1)
From this it follows that the Q-optimal outcome, which is the worst possible
payoff for the P-agents, cannot be worse for them than the payoff @ obtained by
taking u; = 0 and then choosing the smallest payoff differences according to the
inequality above, i.e. taking w41 —u; = a1, —ai;fori=1,...,n—1. We shall

see that this outcome is stable; therefore it is the Q-optimal outcome.

Proposition 2.3 Suppose that (ai;) is a hierarchy. Then the Q-optimal stable

outcome 1s obtained by the payoff vectors @.T given by
Ui = (-1 = Cicrie1) + (@icio2 — @icgica) + ...+ (@21 — a1a)
and

Vi = Qi — oy

0

for all i between 1| and n.

PROOF. By the foregoing argument, we only need to show that the payoffs @
and ¥, described in the proposition, give a stable outcome. In other words, we
must show that for all ¢,j we have u; + v; = u; + aj; — u; > @;;. We distinguish
between two cases: i > j and i < j, the case of i = j being obvious.

To begin with, note that for ¢ > j > k we have the following rule:
Qij = aji + aje = i — (a5 — k) 2 aij — (@i — i) = k. (2)
Now let us treat the case when ¢ > j. Then
Uit oy — u; = (a1 = iagict) + oo+ (Qgz40 — Qjy141) + Qe

11



By using (2) repeatedly (we show the last repetition below) we get
Uit U 22 Qg T O T QG 2 O

The case when 1 < 7 works in an analogous way.

For the P-optimal outcome we can reason analogously; the worst possibie
payoff for the (J-agents cannot be worse than the payoff v obtained by taking
vy = 0 and the smallest possible payoff differences respecting the inequalities
Vig1 — U 2 @i —a; fori=1,...,n—1. By a completely analogous argument

to the proof above we get the dual result.

Proposition 2.4 Suppose that («;;) is a hierarchy. Then a P-optimal stable

outcome is obtained by the payoff vectors given by

U = (@ici = Qimpyimt) + (Micgicy = ticgiz2) + .00+ (@12 = a1)

and
U =y — U

for all i between 1 and n.

Moreover, if (#9;99) is the Q-optimal outcome and (#¥;%%) is the P-optimal

outcome, then any weighted mean of the type
(M9 + (1 = N)a"; 259 + (1 - A)pP)
is also a stable outcome for any value of the parameter A between zero and one.

2.2 Relationships between the hierarchy model and Sat-
tinger’s differential rents model

Sattinger (1979, 1993) considers an assignment model, called the Ricardian dif-

ferential rents model, where there is a continuous distribution of workers’ skills
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and a continuous distribution of machine sizes. Given certain assumptions on the
potential productivity function, he can compute the (unique) stable matching of
workers and machines and the wage function. Ve will show that Sattinger’s

results can be derived from ours.

2.2.1 The differential rents model

Each job (in Sattinger's terminology: each machine) is described by a single
characteristic, say its size, and each worker is described by a single skill. If g;
is a measure of worker i's skill and k; is a measure of the size of machine 7, we
suppose that the potential productivity a;; of matching worker ¢ to machine j is
described by ai; = f(g;, k;) where f(g, k) is an increasing function of both g and
k, and has continuous first and second derivatives, such that the mixed partial

derivative is positive:
52
i
dgok

Sattinger now lets the number of workers and jobs grow indefinitely so that we

0.

get a continuous distribution of skills and machine sizes.

Given this model, Sattinger argues that the assignment in equilibrium of
workers to jobs will be strictly top-down, that is, the nth worker, in order of
decreasing skill, will be assigned to the nth machine, in order of decreasing size.
From the continuous distributions of skills and machine sizes it then follows that
the relationship between them can be described by a monotonous function k(g)
determining which machine size will be assigned to a worker of skill g.

Then Sattinger proceeds by determining the wage function in equilibrium, i.e.
the amount w(g) of the productivity that the employer will pay for a worker of
skill g. He shows that the wage function must satisfy

e [af(g,k)

dg ] k=k(g) ¥

where the partial derivative is taken treating k as a constant. This equation
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determines the wage function up to a constant term. The constant term, de-
scribing the absolute level of wages, will be determined by the conditions for the

last match in order of decreasing skill and machine size, basically by choosing a

minimum wage.

2.2.2 Deriving the differential rents model from hierarchies

We shall now see how the differential rents model can be derived from our theory
of hierarchies. Recall that a hierarchy is a matrix (ay;), with 2,7 = 1,2,...,n, of

potential productivities satisfying

aij S &1, aij S iy (4)
and
aij + Cirg+i 2 Ciger T Qe (5)
We can then introduce an artificial measure of workers’ skills and machine sizes
by defining g; = ¢/n and k; = j/n respectively — although for our purposes
any bounded (uniformly for all n) monotonic functions g(z) and k(j) would do.
Further, define the function f(g, ) on a discrete set by f(gi, &;) = aj.

With these definitions, and letting n tend to infinity, we obtain a uniform
distribution of skills and machine sizes in the unit interval. Consider the function
f(g, k) that is now defined on the unit square. In the limit, Eq. (4) says exactly
that f(g,k) is increasing in both g and k, while Eq. (5) says exactly that the
mixed partial derivative ai:a!'k is positive. Hence, we have obtained the differential
rents model as the limit case of hierarchies.

Let us now derive the differential equation (3) for the wage function w(yg)
given by w(g;) = u;. For a discrete hierarchy we have already computed the
Q-optimal and P-optimal stable outcomes in Proposition 2.3 and Proposition 2.4

respectively. In the Q-optimal outcome we had
Ui = Ujmy = Qi — Aii-]
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while in the P-optimal outcome we had
Uikl — Ui = Qg — Oy

The function f(g, k) being continuously differentiable means that in the limit the

left-hand derivative equals the right-hand derivative:
Qi = Qi = iy, — O .

Hence we have that both the ()-optimal and P-optimal wage functions satisfy
the differential equation (3), so in fact they coincide (except for a constant term)
and thus we have a unique wage function in equilibrium, up to the absolute level

of wages.

3 Questions of fairness and stability

Given the total productivity of an assignment, it is tempting to devise a rule
for sharing the weaith that would be perceived as fair. It is striking how hard
it is to find such a rule that at the same time gives stability. A society could
of course outlaw reassignment of blocking pairs, and we shall discuss this option
briefly in the concluding section. Here, we will look for maximal fairness among
stable outcomes. We shall discuss two main approaches that will in general fail
to be stable for hierarchies: (a) equal payoft to all workers, and (b) equal sharing
between worker and employer. Finally, we propose a notion of fair sharing in
hierarchies that is always stable, namely a linear compromise between the Q-

optimal and P-optimal outcomes.

3.1 Equal payoff to all workers

One attempt towards achieving fairness is to give the same payoff to ail workers,
i.e setting u; = u for all i. When can such an outcome be stable? As usual,

let the ordering of agents be such that the optimal productivity is given by the

15



diagonal sum @1y + ... + @ua, With increasing ai;. Then the employers’ payoffs
are v; = a;; — u. For this outcome to be stable, we must check two things. First,
individual rationality: the conditions v > 0 and v; 2 0 for all ¢ can with our
assumptions be expressed as

0 S u S 1. (ﬁ)

Second, absence of blocking pairs: the condition u+v; > a;; for all 2, j is, together

with the assumption v; = aj; — u, equivalent to
a5 Z Qg for all I,J (7)

Hence, we have shown that giving the same payoff to all workers results in a stable
outcome if and only if the workers' payoff is chosen in the interval [0, a1] and
the matrix (ay;) is diagonal-heavy in the sense that in each column the diagonal

element is the largest one.

3.1.1 Equal payoff to all workers in a hierarchy

A hierarchy (ay;) can satisfy the extra condition of being diagonal-heavy only in
the special case when in every column all elements are equal from the diagonal
and downwards. This can be interpreted as follows. If assignments are made
for employers gn,qn-1,.--,q1 in turn, then at any point worker p assigned to
g; is indistinguishable competencewise to the employer from the workers already
assigned, and hence he/she might as well get the same payoff.

An interpretation of this situation is that ability is uniformly distributed
among workers. In reality this is hardly the case. And for good reasons. It is
easy to show that if there were a total amount of ability to be distributed among
workers, and if the relation between abilities and production is multiplicative, cf.
Roy (1950, 1951), then a uniform distribution would result in the smallest Pareto
optimal total production.

16



3.2 Equal sharing between worker and employer

Another possibility of defining fairness would be that every pair of a worker
. and an employer should share their joint productivity equally between them, i.e.
ui = v; = a;;/2. This outcome will not always be stable. In fact, since a;; < uitv;
must hold for all 7, ; in a stable outcome, we see that a;; < (i + aj5)/2 is a
necessary and sufficient condition for the stability of the “fair” outcome. It is
possible to construct hierarchies having this property, but it would be an extreme
case.

A modified version of this notion of fairness is to let u; = Aay and v; =

(1 = A)a;, where A is a universal parameter between zero and one. In this case,

the necessary and sufficient condition for stability is
i < Aagi + (1 — Aaj;  for all ¢, 7.

However, it is not easy to find such a A. So this method, intuitively appealing as

it might be, will not be stable and survive on a free market.

3.3 A stable notion of fairness

The most typical feature of a hierarchy is that a more competent worker will
always get a higher income than his/her less competent colleagues in any stable
assignment. All definitions of fairness, compatible with stability, must take this
into account. Our first definition of fairness, giving the same payoff to all workers,
failed for this reason.

But stable assignments do allow for a certain degree of freedom in the dis-
tribution of incomes. We have seen in Propositions 2.3 and 2.4 that the best
possible payoff worker p; can get is uf and the worst possible outcome is u?.
The payoff to worker p; must be somewhere in the interval [uF, u?] The equally
shared productivity ay;/2 might possibly lie outside this interval. Our second

definition of fairness failed for this reason.
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The notion of fairness we propose is for the workers and employers to compro-
mise between their respective optimal outcomes, and hence set u; = (uf + u?)/?

and v; = (vF + v?)/2. Explicitly, this “fair outcome” takes the shape:

api= Fiimlogi-1 — )
4) 7

Ui =

and
o St Enil8ii —Way)
- .

2

Of course, one could object and say that it is unreasonable to expect the workers

and employers to compromise on equal terms. This kind of considerations can be
taken care of by introducing a weighted compromise, with a universal parameter
A between zero and one, so that u; = Auf + (1 = A)u? and v; = AP +(1 - Awd.

As we saw when studying Sattinger’s continuous model, when the numbers
tend to infinity the P-optimal and @-optimal solutions will differ by a constant

term only, in which case all stable solutions will be on the line
Ma?; 89 + (1 = A)af;eh).

This is a kind of justification for looking for fair outcomes on this line in the

discrete case too.

4 Conclusions and Applications

We have discussed a model for assigning workers to jobs, and in particular we
have studied a certain kind of market which might be named ’hierarchical’, since
it induces a linear ordering of workers and employers according to ability. These
hierarchies were mathematically convenient objects, in that they allowed us to
state explicitly the worker optimal and employer optimal stable distribution of
earnings; we then suggested that a fair distribution should be an average between
these two extremes. But how applicable is this model? Certainly the idea of a

linear ordering of all workers in the world is counterfactual, since different kinds

18



of jobs emphasize different skills of workers. But in a particular sector, the idea
may not be too farfetched. As noted in the introduction, a Tayloristic division of
labor could be something of the past, especially in the more developed segments
of the post-industrial society. Under the assumption that the ability to increase
one’s skill is positively correlated to one’s current position, a dynamic model of
repeated assignments would eventually lead to a hierarchy-like situation.

Another aspect of letting abilities increase and repeating the assignment game
over and over again is that of modelling a growing economy. Production will
grow over time, both because abilities increase, but also because new, and more
productive matches are formed. Suboptimal assignments, because of imperfect
information, or repressive and corrupt regimes will then automatically lead to
slower growth.

How could imperfect information be introduced into the model? A very simple
way is to define a diagonal matrix, where some probability rule assigns a one or
a zero in the diagonal entries. When multipying the ability vectors {or matrices)
one just inserts this matrix between the two, thus preventing the assignments
corresponding to zero entries. The result could be either unemployment, or a
suboptimal assignment.

Finally, we shall return to the question of equal earnings among workers. In
Section 3 it was said that this could produce a stable matching in a hierarchy only
if the distribution of ability among workers is essentially even. Introducing strong
unions and centralism into the model makes equal pay more plausible. Suppose
that workers and employers have agreed on how they should share earnings as
groups. Then workers collectively decide according to a majority vote between
two sharing rules, where one calls for earnings in proportion to ability, while

‘the other suggests equal distribution. Then a majority would vote for equality.
This is because the productivity distribution is skewed, so that there are fewer

workers losing than gaining. In the long run, this would lead to shirking and
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would discourage workers’ ambition to improve their ability, thus slowing down

growth.
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Sammandrag pé svenska

Hierarkiska uppdrag: stabilitet och rittvisa
Vi studerar en modell som parvis férenar arbetare och arbetsgivare i uppdrag. Varje
par, har en potentiell produktivitet. All information om marknaden finns i matrisen
over potentiella produktiviteter.

Under vissa villkor som vi specificerar ar marknaden hierarkisk i bemarkelsen att
bade arbetare och arbetsgivare kan rangor&nas enligt fsrmaga. Den Pareto-optimala
hopparningen i uppdrag ar den som ger den storsta sammanlagda produktionen.
Den far man genom att kombinera den biste arbetaren med den baste
arbetsgivaren, osv. dnda ner till det par som utgors av de samsta av vardera sorten.

Vi anger ndgra egenskaper hos hierarkier. Det finns en arbetaroptimal, respektive
en arbetsgivaroptimal fordelning av fortjansten. Explicita uttryck ges for dessa. Vi
visar att virt hierarkibegrepp ar en diskret analog till Sattingers (1979) modell for
rikardiansk differentialrinta, som ldtt kan hiarledas ur var modell.

Diskussionen fors vidare till frigan om hur man skall kunna dela rdfvist pa
arbetsresultatet, sa att delningen och uppdragsstrukturen forblir szabil. Det visar sig
att tva forestillningar om rittvisa vanligen leder till en instabil 16sning. En parvis
delning av den Pareto-optimala produkten enligt en fast delningskvot leder till

stabilitet bara om man gor ett mycket restriktivt antagande. Forsoker man dela
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