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Abstract 

In this paper, we assess the usefulness of constant gain least squares 

(CGLS) when forecasting the unemployment rate. Using quarterly data 

from 1970 to 2009, we conduct an out-of-sample forecast exercise in 

which univariate autoregressive models for the unemployment rate in 

Australia, Sweden, the United Kingdom and the United States are em-

ployed. Results show that CGLS very rarely outperforms OLS. At hori-

zons of six to eight quarters, OLS is always associated with higher fore-

cast precision, regardless of model size or gain employed for Australia, 

Sweden and the United States. Our findings suggest that while CGLS has 

been shown valuable when forecasting certain macroeconomic time 

series, it has shortcomings when forecasting the unemployment rate. 

One problematic feature is found to be an increased tendency for the 

autoregressive model to have explosive dynamics when estimated with 

CGLS. 

JEL Classification: E24, E27 

Keywords: Out-of-sample forecasts 
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Summary in Swedish 

I denna studie jämförs prognosförmågan hos univariata autoregressiva 

modeller skattade med två olika metoder: ordinary least squares (OLS) och 

constant gain least squares (CGLS). Vi utvärderar modellprognoser för ar-

betslöshetsgraden i Australien, Storbritannien, Sverige och USA. Resulta-

ten visar att CGLS väldigt sällan genererar bättre prognoser än OLS. På 

prognoshorisonter från sex till åtta kvartal förknippas OLS alltid med en 

högre prognosprecision än CGLS oavsett modellens storlek eller vilket 

gain som används för Australien, Sverige och USA. Resultaten antyder 

att trots att CGLS har visat sig värdefullt när det gäller att prognostisera 

vissa makroekonomiska tidsserier så förefaller det finnas problem när 

arbetslöshetsgraden skall prognostiseras. Ett av dessa problem är en 

ökad tendens för den autoregressiva modellen att ha explosiv dynamik 

när den skattas med CGLS. 
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1. Introduction

Constant gain least squares (CGLS) has become increasingly popular in macroeconomic models 

where the rational-expectations framework has been abandoned; see for example Sargent (1999), 

Evans and Honkapohja (2001), Orphanides and Williams (2004), Gaspar et al. (2006) and Dale et al. 

(2011). In such models, agents in the economy update their beliefs about the economy’s true pa-

rameter values each period as additional data become available. CGLS attaches a smaller weight to 

an observation the more time has passed since its occurrence. As such, it allows for the possibility 

of structural change. However, while being a popular estimation method for forecasting models in 

theoretical frameworks, the empirical literature employing CGLS in forecasting is limited. Never-

theless, analysis by Branch and Evans (2006) shows that the use of CGLS can be fruitful when 

forecasting inflation and GDP growth using low-order vector autoregressions (VARs). In addition, 

Antipin et al. (2012) show that CGLS is useful when forecasting inflation in Australia, Sweden, the 

United Kingdom and the United States using univariate autoregressive (AR) models. 

The infrequent use of CGLS in the empirical forecasting literature is surprising, particularly given 

the potential for CGLS to account for structural change through the explicit use of time-varying 

coefficients. Many forecasters, policy makers and analysts are interested in forecasting variables 

where there is reason to believe that the time-series properties are changing over time. One such 

variable is the unemployment rate. Due to the social consequences of unemployment, politicians 

and policy institutions in many countries subject the labour market to what can be seen as a reason-

ably steady flow of policy experiments. For example, in Australia, a set of labour-market programs 

known as “Working nation” was introduced in 1994. This included intensive counselling services 

and a job-creation program for long-term unemployed. However, with a shift of government in 

1996, the program was abolished.1 In Sweden, “Youth practice” – a subsidised work program for 

young unemployed – was introduced in 1992 due to the rapidly rising unemployment rate at the 

time. In 1995, it was replaced by other programs.2 Finally, in the United States, the duration of un-

employment benefits are regularly extended during recessions. In addition to policy changes, there 

are also other aspects of the labour market that might be subject to change, such as the degree of 

centralization in the wage-bargaining process.3 In light of such changes, one would expect the level 

and/or dynamics of the unemployment rate to change over time.4 Empirical support for time varia-

tion in the dynamics and/or equilibrium level of the unemployment rate has been provided by, for 

example, Jaeger and Parkinson (1994), Gordon (1997), Debelle and Vickery (1998), Apel and Jans-

1 See, for example, Webster and Harding (2001). 

2 See, for example, Larsson (2003). 

3 See, for example, Uusitalo (2005) and Du Caju et al. (2008).  

4 One concrete example of this is that the equilibrium unemployment rate should rise when the duration of unemployment 

benefits is extended; see, for example, Mortensen (1977).  
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son (1999), Papell et al. (2000), Cogley and Sargent (2001), Skalin and Teräsvirta (2002), Summers 

(2004), Lim et al. (2009) and Dueker et al. (2010). 

 

When it comes to forecasting the unemployment rate, there is a large literature employing a fairly 

wide range of methods; see, for example, Funke (1992), Montgomery et al. (1998), Rothman (1998), 

Brown and Moshiri (2004), Franses et al. (2004), Golan and Perloff  (2004), Deschamps (2008) and 

Milas and Rothman (2008). However, the use of CGLS in unemployment rate forecasting has (to 

our knowledge) not been investigated previously. The purpose of this paper is therefore to assess 

the usefulness of CGLS when forecasting the unemployment rate. This will be done by comparing 

the out-of-sample forecast performance of univariate AR models, specifically i) AR models estimat-

ed with OLS and ii) AR models with time-varying parameters estimated by CGLS. This is a reason-

able starting point for an investigation of the usefulness of CGLS since AR models estimated with 

OLS are commonly used in empirical work and are also generally considered to forecast reasonably 

well.5 Out-of-sample forecast exercises are carried out for four different countries, namely Australia, 

Sweden, the United Kingdom and the United States. Using quarterly data from 1970 to 2009, we 

find that CGLS largely is unsuccessful in improving forecast precision relative to OLS. The results 

in this paper hence suggest that while CGLS has theoretical appeal – and also has been shown to be 

an empirically relevant forecasting tool in certain settings – it does not seem to be a simple and 

certain way to improve macroeconomic forecasts. 

 

The rest of this paper is organised as follows: Section 2 discusses the models and estimation. In 

Section 3, data are presented and the results are discussed. Finally, Section 4 concludes. 

 

2. The modelling framework 

We assess the empirical usefulness of CGLS as a forecasting tool through an out-of-sample forecast 

exercise. Following Antipin et al. (2012), univariate AR models are employed for this purpose; these 

are estimated using two different methods, namely CGLS and OLS. Since OLS is the most com-

monly employed estimation method for AR models in applied work, it serves as a natural bench-

mark against which to compare CGLS. 

 

There is, however, also good theoretical motivation for comparing these two methods since OLS 

and CGLS can be seen as having fundamentally different assumptions regarding the underlying 

structure of the economy. In particular, OLS is a natural choice when estimating an AR model if 

one believes that there has been no structural change since it relies on the assumption of parame-

ters being constant over time. We accordingly write the AR(p) model as 

                                                      

5 AR models are accordingly often used as a benchmark in the forecasting literature; see, for example, Pesaran et al. (2009). 
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tptpttt uuuu    2211 ,   (1) 

 

where tu  is the unemployment rate and t  is an iid error term. In contrast, when relying on CGLS 

as estimation method, time variation of the parameters is explicitly assumed and we write the AR(p) 

model as  

 

tpttptttttt uuuu    ,2,21,1  .   (2) 

 

Defining the parameter vector as   tpttttc ,,2,1   , the estimated parameter 

vector is updated according to 

 

 ,ˆˆˆ
1

1

1 




 ttttttt cXuXRcc      (3) 

 

where  

 

 ,11   ttttt RXXRR      (4) 

 

where the constant gain is denoted by  and    ptttt uuuX 211 . The larger  is, 

the higher is the weight put on more recent observations (which means that parameter estimates are 

updated faster). The explicitly assumed time variation of the parameters is of course the main rea-

son for our interest in using CGLS in empirical work. If one believes that the structure of the 

economy is evolving in such a way that there is quantitatively meaningful time variation in the pa-

rameters of the AR model, it is reasonable to try to take this into account.  

 

We employ seven different gains for the CGLS algorithm in the out-of-sample forecast exercise in 

this paper:  10.0075.005.004.003.002.001.0 . These values cover the most 

relevant range for the gain used in both the theoretical and the empirical literature.6 The initial value 

of the parameter vector is set to   0010 c . This is consistent with a univariate ran-

dom walk without drift, which seems reasonable given that the unemployment rate is often de-

                                                      

6 As a comparison, it can be noted that Branch and Evans (2006) found a gain of 0.0345 successful. The results of Antipin et al. 

(2012) pointed to 0.05 being a reasonable choice. 



10 

scribed as being a unit-root process, or at least highly persistent;7  see for example León-Ledesma 

(2002), Camarero and Tamarit (2004) and Gustavsson and Österholm (2007). The initial value for R 

is set to MbbR  , where b is a (p+1)x1 vector,    1321 pttt uuub  . M is a 

(p+1)x(p+1) diagonal matrix,  01.001.00 diagM  , which is added to bb   so that the

starting value of R will be non-singular. This way, we get a reasonable starting value for R.8 

Having briefly presented our modelling framework, we next turn to the issue of out-of-sample 

forecast performance. While one can hypothesise regarding time-variation in the univariate time-

series representation of unemployment rates, our main objective here is to assess the merit of such 

an assumption on the forecasting performance of the AR models. In practice, there are of course 

many ways in which parameters can be time varying and CGLS may not always be able to approxi-

mate this well. Hence, it is not necessarily the case that CGLS can generate better forecasts than 

OLS even if the parameters of the model truly are time varying. 

3. Empirical findings

3.1 Data and method 

We use quarterly data on seasonally adjusted unemployment rates for Australia, Sweden, the United 

Kingdom and the United States from 1970Q1 to 2009Q4. The data are plotted in Figure 1. A 

noteworthy feature is that while a unique equilibrium level over time in each country certainly can-

not be dismissed based solely on a visual inspection, it does not seem unlikely that the uncondition-

al mean changes over time. For example, in Sweden, the unemployment rate fluctuated between 1.8 

and 3.7 percent in the 1970s. During the last ten years, on the other hand, it has not dropped below 

5.7 percent. Similarly, the UK unemployment rate was substantially higher on average in the 1980s 

than in the 1970s, with the means for the two decades being 9.9 and 4.6 percent respectively. Figure 

1 hence seems to lend some support to the claim made above that the time-series properties of the 

unemployment rate may be time varying and, accordingly, that CGLS might be of interest from a 

forecasting perspective. On the other hand, it is also possible that the observed movements are due 

to a data-generating process which is stable over time but characterised by high persistence.  

We conduct the out-of-sample forecast exercise as follows: The parameter values estimated by 

CGLS are updated according to equations (3) and (4) each quarter and forecasts from one to eight 

7 These coefficient values are also commonly used as priors in Bayesian analysis of AR and VAR models; see, for example, 

Litterman (1986) and Beechey and Österholm (2010).  

8 Given that our samples all range from 1970Q1 to 2009Q4 (see the discussion in Section 3), the CGLS estimation is initialised at 

t = 1971Q2 to allow for a sufficient number of lags. 
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quarters ahead are generated at each point in time. The first forecasts are generated in 1983Q1 and 

the last in 2007Q4. We hence have the same number of forecasts – 100 to be specific – to evaluate 

for all horizons. The AR model in equation (1) is estimated using OLS on an expanding sample; 

that is, the model is re-estimated each quarter.9 Forecasts from this model are also generated up to 

eight quarters ahead every quarter from 1983Q1 to 2007Q4. Forecast errors are recorded and used 

to calculate the root mean square forecast errors (RMSFEs). The RMSFE is defined as 

 

 






 
1

0

2

|

1
hN

i

itihtihthh uuNRMSFE ,    (5) 

 

where hN  is the number of forecasts at horizon h, htu   is the outcome at time t+h and thtu |  is the 

forecast of the unemployment rate at time t+h made at time t. The RMSFEs of the different models 

are then compared in order to identify the model that generates the most accurate forecasts. 

Figure 1. Unemployment rates. 
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An issue of particular interest to economists doing empirical work is the choice of lag length in AR 

models. Many approaches have been suggested in the literature and opinions differ concerning the 

appropriateness of the various alternatives.10 We circumvent this issue to a large extent by investi-

                                                      
9 While the model in equation (1) has constant parameters within each sample, the fact that it is re-estimated each quarter 

means that there is variation over time in the parameters used to generate the forecasts. This time variation is reasonable 

though, seeing that the approach mimics how out-of-sample forecasts would be generated in real time. 

10 See, for example, Akaike (1974), Schwarz (1978), Hannan and Quinn (1979), Hendry (1995) and Lütkepohl (2007). 
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gating forecasting performance with respect to all lag lengths,  4321p ; comparisons

between OLS and CGLS are then focused on models of a given lag length. As a reference point, we 

still provide optimal lag length based on the Schwarz (1978) information criterion when applied to 

equation (1) estimated with OLS. This is done for the initial sample used to estimate the models 

before the first forecast is generated, that is, 1970Q1 to 1983Q1. This is the most relevant sample 

for our purposes, since this is the one that would initially be used in practice in real time. Results 

from this exercise are given in Table 1. 

Table 1. Optimal lag length for AR model estimated with OLS. 

Lag length 

Australia 1 

Sweden 4 

United Kingdom 4 

United States 2 

Note: Lag length established using the Schwarz (1978) information criterion. Sample periods:1970Q1 to 1983Q1. 

3.2 Main results 

Concerning the evaluation of the forecasts, we focus solely on the RMSFE and define the best 

estimation method as the one associated with the lowest RMSFE.11 The results from the out-of-

sample forecasts are given in Tables A1 to A4 in the Appendix. 

Turning first to the results for Australia in Table A1, it can be seen that regardless of lag length, the lowest 

RMSFEs are almost always obtained when OLS is employed. Only at the one-quarter horizon for the 

AR(1) model and the one- and two-quarter horizons for the AR(2) model does CGLS offer any kind of 

improvement over OLS. These improvements are, however, very small – the largest reduction in the 

RMSFE is three percent. The loss in forecast precision from using CGLS grows with the forecast horizon 

and tends to be substantial at the longest horizons; at the eight-quarter horizon, CGLS is always at least 

ten percent worse than OLS. It should also be noted that for large gains, CGLS generates a dramatic loss 

in forecast precision. For example, at the eight-quarter horizon and using a gain of ten percent, the 

RMSFE is between 39 and 90 percent larger when CGLS is used. It hence appears that there are virtually 

no reasons from a forecasting point of view for using CGLS instead of OLS on the Australian data.  

Table A2 shows the results for Sweden. Also for Sweden is it – with only a few exceptions – better to use 

OLS than CGLS. Only at short horizons for the AR(1) model can any improvements from using CGLS 

be found. At longer horizons, the deterioration in forecasting precision from using CGLS is typically 

11 No tests for whether differences in forecasting performance are statistically significant are conducted. In line with Armstrong 

(2007) and Beechey and Österholm (2010), we argue that significance testing is not particularly interesting in the present 
setting. The performance of two reasonable alternatives is compared and in such a situation few forecasters would choose a model 

or a method with a larger RMSFE just because it was not significantly larger. 
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substantial. For example, at the eight-quarter horizon the increase in the RMSFEs for the AR(4) model – 

which was judged optimal according to the Schwarz information critierion – ranges from 16 to 44 percent 

depending on the gain employed. Furthermore, similar to the results found for Australia, the poor fore-

casting performance of CGLS at long horizons is particularly evident for large gains.12 

 

For the United Kingdom, results are presented in Table A3 and are more favourable to CGLS than what 

was the case for Australia and Sweden. For example, for the AR(1) model, the RMSFEs are almost exclu-

sively lower for CGLS than OLS (with horizons of five to eight quarters for a gain of 0.01 being the ex-

ceptions). It can also be noted that large gains perform unusually well for this model. The AR(1) model is 

by far the worst in terms of forecasting performance though – its RMSFEs are substantially larger than 

those of the other models. Hence, it is perhaps more interesting to look at the other models, particularly 

since the Schwarz information criterion suggests that the AR(4) model is optimal for UK unemployment. 

For the larger models, it is still the case that CGLS does fairly well at short horizons; the RMSFEs are in 

many cases lower when CGLS is used than when OLS is used. However, at forecast horizons from six to 

eight quarters, OLS always outperforms CGLS for the AR(2), AR(3) and AR(4) models. However, the 

loss in forecasting precision at long horizons from using CGLS is not as large as it was for Australia or 

Sweden – the RMSFE is never more than 24 percent larger for CGLS.  

 

The results for the United States are given in Table A4. As can be seen, OLS has a lower RMSFE than 

CGLS in almost all cases. Only when a low gain is used to forecast at short horizons using the AR(1) 

model is CGLS associated with a lower RMSFE than CGLS. For the AR(3) and AR(4) models, we once 

again find larger gains associated with a very large deterioration in forecast precision at longer horizons. 

For both the AR(3) and AR(4) models, the RMSFE at the eight-quarter horizon increases by approxi-

mately 85 percent when CGLS with a gain of 0.10 is employed instead of OLS. 

 

The general inability of CGLS to outperform OLS is also exemplified in Figure 2 where we present a 

selection of relative RMSFEs for the AR(p) models given in Table 1. The relative RMSFE at horizon h is 

calculated as 

 

hOLS

hCGLS

h
RMSFE

RMSFE
RR

,

,
 ,     (6) 

 

where hCGLSRMSFE ,  is the RMSFE of the AR model estimated with CGLS at horizon h and 

hOLSRMSFE ,  is the corresponding-horizon RMSFE for the AR model estimated with OLS. A 

                                                      

12 It can be noted that the RMSFEs for Sweden are substantially larger than those for the other countries. The reason for this is 

some very large forecast errors at a few timepoints where the estimated models are associated with explosive dynamics (that is, 

where the sum of the AR coefficients is larger than unity). 
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relative RMSFE smaller than unity hence means that CGLS is associated with higher forecast preci-

sion than OLS; as can be seen from Figure 2, this is rarely the case. 

Figure 2. Relative RMSFEs for out-of-sample forecasts generated 1983Q1-2007Q4. 
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Note: Forecast horizon in quarters on the horizontal axis and relative RMSFE on the vertical. A relative RMSFE smaller than unity 

indicates that CGLS generates better forecasts than OLS. Lag length used for the respective country is given in Table 1. 

3.3 What explains the failure of CGLS? 

Summing up the results, it can be concluded that CGLS in general does not offer an improvement on the 

forecast accuracy of OLS on the unemployment data considered here. This might seem both surprising 

and disappointing given the reliable improvements in forecasting precision documented by Antipin et al. 

(2012) when forecasting inflation in the same four countries. So what might explain the poor perfor-

mance of CGLS? As suggested earlier, CGLS should be superior to OLS if there is quantitatively mean-

ingful time variation in the univariate time-series representation. One interpretation of the results from 

our out-of-sample forecast exercise is accordingly that the data-generating process – despite the fairly 

extensive literature documenting the opposite – has been reasonably stable.13 

 

This hypothesis finds some support in the data. Figures 3 and 4 show recursive coefficient esti-

mates from two AR(1) models estimated with OLS – one for Australian inflation and one for the 

                                                      

13 Alternatively, it could be argued that the time series studied are subject to time variation in parameters that CGLS is not able 

to approximate well. 
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Australian unemployment rate.14 As pointed out above, the AR(1) model for the Australian unem-

ployment rate did generally forecast a fair bit better when estimated with OLS rather than CGLS. 

As shown by Antipin et al. (2012) though, the AR(1) model for inflation generated better forecasts 

when CGLS was used, regardless of the gain employed. Looking at Figure 3, the recursive estimates 

are moving around substantially over time, indicating that the data-generating process for Australi-

an inflation is not stable. Turning to Figure 4, on the other hand, it can be seen that the recursive 

estimates are reasonably stable over time for the unemployment rate. This suggests that the data-

generating process for the Australian unemployment rate might be fairly stable, which could help 

explain why CGLS does not offer improvements in forecast precision relative to OLS in this case. 

Figure 3. Recursively estimated coefficients using OLS for AR(1) model for Australian 
inflation.
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Note: Dashed line gives point estimate. Solid lines give plus/minus two standard errors. Sample is 1970Q1-1983Q1/2007Q4. 

14 The recursive coefficient estimates are generated by estimating the models on an expanding sample (adding one observation 

at a time) and recording point estimates and standard errors each time. The first sample is 1970Q1 to 1983Q1 and the last 

sample is 1970Q1 to 2007Q4. 100 recursive estimates are hence generated for each model. 
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Figure 4. Recursively estimated coefficients using OLS for AR(1) model for the Australian 

unemployment rate. 
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Note: Dashed line gives point estimate. Solid lines give plus/minus two standard errors. Sample is 1970Q1-1983Q1/2007Q4. 

 

But while stability of the data-generating process might have some relevance in explaining our re-

sults, it is only part of the explanation. For Australia and Sweden, it appears that the main driver of 

our results is the fact that the CGLS estimator has a tendency to generate estimates of the AR coef-

ficients that imply an explosive process, that is, the sum of the AR coefficients is larger than unity. 

This can be seen in Figures 5 and 6 which show the sum of the estimated AR coefficients for the 

AR(1) and AR(4) models for Australian and Swedish unemployment rate respectively. The left pan-

el shows the sum of estimated coefficients when CGLS with a gain of 10.0  has been used and 

the right panel shows the corresponding sum when OLS has been used.15  

                                                      

15 Figures A1 and A2 in the appendix show the corresponding graphs for the United Kindom and the United States. 
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Figure 5. Estimated autoregressive coefficient from AR(1) models for the Australian 
unemployment rate. 
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Note: CGLS gives estimates of autoregressive coefficient from model estimated with CGLS using a gain of 0.10; estimation is 

initialised at 1971Q2. OLS gives recursively estimated autoregressive coefficient from model estimated with OLS; sample is 

1970Q1-1983Q1/2007Q4. 

 

Figure 5 clearly shows how the CGLS estimator in many cases generates dynamics that imply an 

explosive process. This can be contrasted with the OLS estimator where this kind of dynamics is 

found only in the beginning of the evaluation period. For the Swedish data, Figure 6 shows that the 

number of occasions where CGLS generates explosive dynamics is fewer than in the Australian 

case. The problem is nevertheless present and still relevant in explaining our findings. It can be 

noted that CGLS generates explosive dynamics more often than OLS and that in the cases when 

both methods generate explosive dynamics, the sum of the AR coefficients is a fair bit larger for 

CGLS than for OLS; for forecasts at long horizons, this larger sum makes a substantial difference.16 

                                                      

16 While the estimated sum of the AR coefficients is considered the main problem, it should be noted that the estimate of the 

intercept of course also matters for the forecasts. It can alleviate or exacerbate the problem. 
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Figure 6. Sum of estimated autoregressive coefficients from AR(4) models for the Swedish 
unemployment rate. 
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Note: CGLS gives the sum of estimated of autoregressive coefficients from model estimated with CGLSusing a gain of 0.10; 

estimation is initialised at 1971Q2. OLS gives the sum of recursively estimated autoregressive coefficients from model estimated 
with OLS; sample is 1970Q1-1983Q1/2007Q4. 

 

The problems associated with forecasting with an explosive process are illustrated in Figure 7. The 

figure shows three forecasts – using data up to and including 1993Q2 – from AR(4) models for 

Swedish unemployment; these forecasts are based on models estimated with i) OLS, ii) CGLS with 

a gain of 0.03 and iii) CGLS with a gain of 0.10. In this case, all three models have explosive 

dynamics and generate forecasts that diverge. The problem is substantial for all three models. The 

model estimated with OLS does not perform as badly as the models estimated with CGLS but still 

generates a forecast for the unemployment rate eight quarters ahead which is more than 30 percent; 

needless to say, this would have been perceived as unreasonable by any economist in real time. 

 
 
 
 



19 

 

Figure 7. Forecasts from AR(4) models for Swedish unemployment rate made using data 
including 1993Q2. 
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Note: CGLS estimation is initialised at 1971Q2. OLS sample is 1970Q1-1993Q2. 

 

But while all models suffer from this problem, it is most severe for CGLS with a gain of 0.10. The 

extent of the problem can be seen by noting that the squared forecast error at the eight-quarter 

horizon is 1339. This single observation contributes in a spectacular way to the RMSFE; in fact, 

roughly half of the sum of the squared forecast errors in equation (5) for the eight-quarter horizon 

stems from this observation. By comparison, the corresponding squared forecast error for the 

model estimated with OLS is 466. While this is also a very large number, it is roughly 873 units 

smaller than that from CGLS with a gain of 0.10. Needless to say, this makes a substantial differ-

ence for the RMSFE and helps explain why CGLS performs so badly for Sweden.17 From a more 

general perspective, it shows that a forecaster relying on CGLS to forecast highly persistent time 

series needs to pay extra attention to the forecasts being generated by the model. 

 

4. Conclusions  

This paper has added to the empirical literature on CGLS as a macroeconomic forecasting tool by 

investigating the out-of-sample forecast performance of AR models estimated with CGLS and OLS 

when forecasting the unemployment rate. Using data from Australia, Sweden, the United Kingdom 

and the United States, we find that CGLS does not appear particularly useful in terms of improving 

forecast precision relative to OLS. The failure of CGLS is particularly evident at longer forecast 

                                                      

17 That explosive dynamics constitutes a problem is also confirmed by the fact that CGLS performs approximately as well as OLS  

for the United Kingdom. As can be seen in Figure A1, the AR(4) model estimated with CGLS using a gain of 0.10 is not 

associated with explosive dynamics at any point in time.  
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horizons. At horizons of six to eight quarters, OLS is always associated with higher forecast preci-

sion than CGLS, regardless of model size or gain employed for Australia, Sweden and the United 

States. 

The fact that OLS tends to outperform CGLS is consistent with the time-series properties of the 

unemployment rate in the studied countries being stable; if the data-generating process does not 

change in a quantitatively meaningful way over time, we would expect the model which assumes 

parameter stability to work better from a forecasting perspective. However, for both Australia and 

Sweden, it appears that the main cause for the failure of CGLS is the fact that it has an increased 

tendency to generate estimates of the AR coefficients that imply an explosive process. With an 

explosive process, forecasts diverge and are in some cases associated with extremely large forecast 

errors. A forecaster can of course use good judgement and say that a given model forecast is unrea-

sonable, thereby reducing the extent of this problem in practice. This does require both monitoring 

and a forecaster with good judgement though. We accordingly conclude that while CGLS in previ-

ous studies has been shown to have the potential to be a valuable contribution to the toolkit em-

ployed by forecasters, it is by no means a recipe for guaranteed success in macroeconomic forecast-

ing. 
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Appendix 

Table A1. RMSFEs at different forecasting horizons for model estimated by CGLS and OLS – 
Australia. 

Gain 0.01 0.02 0.03 0.04 0.05 0.075 0.10 OLS 

1 lag Horizon 

1 0.305 0.302 0.300 0.299 0.299 0.302 0.305 0.304 

2 0.559 0.554 0.551 0.553 0.557 0.576 0.600 0.548 

3 0.818 0.812 0.810 0.815 0.827 0.876 0.939 0.788 

4 1.066 1.058 1.058 1.068 1.089 1.175 1.289 1.012 

5 1.304 1.295 1.298 1.315 1.346 1.480 1.663 1.220 

6 1.534 1.525 1.531 1.557 1.601 1.793 2.071 1.413 

7 1.747 1.738 1.749 1.784 1.843 2.103 2.499 1.585 

8 1.954 1.945 1.963 2.008 2.085 2.425 2.970 1.747 

2 lags Horizon 

1 0.246 0.241 0.239 0.237 0.236 0.237 0.240 0.242 

2 0.453 0.438 0.430 0.425 0.424 0.432 0.451 0.436 

3 0.696 0.676 0.665 0.660 0.661 0.686 0.731 0.660 

4 0.933 0.907 0.893 0.887 0.891 0.935 1.010 0.873 

5 1.159 1.128 1.113 1.107 1.115 1.185 1.298 1.067 

6 1.379 1.344 1.327 1.322 1.334 1.431 1.592 1.248 

7 1.578 1.538 1.519 1.516 1.531 1.656 1.869 1.402 

8 1.776 1.731 1.712 1.710 1.728 1.881 2.152 1.548 

3 lags Horizon 

1 0.229 0.226 0.225 0.224 0.225 0.230 0.242 0.223 

2 0.414 0.409 0.406 0.406 0.408 0.426 0.460 0.393 

3 0.646 0.639 0.638 0.640 0.648 0.696 0.778 0.603 

4 0.870 0.861 0.859 0.863 0.877 0.957 1.090 0.801 

5 1.089 1.076 1.073 1.080 1.101 1.221 1.419 0.987 

6 1.305 1.288 1.286 1.295 1.324 1.487 1.755 1.163 

7 1.502 1.481 1.479 1.491 1.526 1.732 2.078 1.314 

8 1.699 1.675 1.673 1.688 1.730 1.980 2.410 1.459 

4 lags Horizon 

1 0.233 0.231 0.230 0.231 0.232 0.241 0.257 0.225 

2 0.428 0.424 0.424 0.426 0.431 0.457 0.499 0.402 

3 0.670 0.669 0.671 0.677 0.689 0.745 0.835 0.618 

4 0.903 0.901 0.906 0.916 0.936 1.030 1.182 0.821 

5 1.130 1.128 1.135 1.150 1.180 1.323 1.551 1.010 

6 1.354 1.351 1.360 1.382 1.424 1.628 1.954 1.188 

7 1.557 1.552 1.565 1.593 1.648 1.921 2.363 1.341 

8 1.760 1.753 1.769 1.805 1.875 2.227 2.816 1.487 

Note: Forecasting horizon is given in quarters. 
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Table A2. RMSFEs at different forecasting horizons for model estimated by CGLS and OLS – 
Sweden. 

 Gain 0.01 0.02 0.03 0.04 0.05 0.075 0.10 OLS 

1 lag Horizon         

 1 0.428 0.426 0.423 0.418 0.414 0.400 0.387 0.431 

 2 0.852 0.856 0.853 0.847 0.840 0.815 0.789 0.851 

 3 1.326 1.346 1.352 1.349 1.341 1.309 1.271 1.312 

 4 1.849 1.902 1.928 1.936 1.932 1.897 1.850 1.811 

 5 2.427 2.533 2.594 2.624 2.634 2.612 2.561 2.350 

 6 3.048 3.230 3.344 3.410 3.444 3.454 3.413 2.916 

 7 3.722 4.007 4.195 4.314 4.385 4.452 4.442 3.518 

 8 4.453 4.876 5.165 5.354 5.477 5.625 5.670 4.158 

          

2 lags Horizon         

 1 0.352 0.335 0.329 0.327 0.327 0.330 0.337 0.318 

 2 0.739 0.701 0.688 0.687 0.691 0.706 0.724 0.638 

 3 1.211 1.160 1.145 1.149 1.159 1.190 1.219 1.026 

 4 1.762 1.709 1.695 1.706 1.726 1.775 1.813 1.462 

 5 2.406 2.367 2.364 2.390 2.425 2.499 2.545 1.951 

 6 3.123 3.114 3.128 3.176 3.234 3.348 3.411 2.452 

 7 3.936 3.979 4.020 4.100 4.190 4.362 4.452 2.980 

 8 4.858 4.976 5.058 5.179 5.314 5.567 5.697 3.530 

          

3 lags Horizon         

 1 0.345 0.333 0.329 0.328 0.329 0.340 0.359 0.314 

 2 0.698 0.679 0.674 0.678 0.687 0.725 0.786 0.622 

 3 1.148 1.123 1.119 1.130 1.148 1.217 1.305 0.999 

 4 1.684 1.659 1.660 1.679 1.708 1.803 1.898 1.434 

 5 2.321 2.310 2.323 2.356 2.401 2.525 2.627 1.935 

 6 3.039 3.054 3.085 3.140 3.205 3.369 3.491 2.459 

 7 3.861 3.919 3.980 4.065 4.159 4.373 4.517 3.021 

 8 4.792 4.911 5.012 5.138 5.271 5.550 5.710 3.605 

          

4 lags Horizon         

 1 0.349 0.351 0.357 0.368 0.381 0.418 0.456 0.326 

 2 0.684 0.695 0.714 0.738 0.764 0.833 0.895 0.641 

 3 1.072 1.083 1.111 1.142 1.171 1.233 1.278 1.014 

 4 1.563 1.581 1.620 1.663 1.699 1.759 1.778 1.452 

 5 2.138 2.185 2.258 2.334 2.403 2.546 2.653 1.962 

 6 2.767 2.842 2.949 3.056 3.151 3.342 3.475 2.501 

 7 3.479 3.601 3.752 3.893 4.005 4.168 4.207 3.081 

 8 4.251 4.436 4.652 4.850 5.011 5.245 5.277 3.665 

Note: Forecasting horizon is given in quarters. 
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Table A3. RMSFEs at different forecasting horizons for model estimated by CGLS and OLS – 

United Kingdom. 

 Gain 0.01 0.02 0.03 0.04 0.05 0.075 0.10 OLS 

1 lag Horizon         

 1 0.263 0.257 0.252 0.247 0.243 0.233 0.224 0.269 

 2 0.508 0.495 0.483 0.474 0.466 0.450 0.435 0.517 

 3 0.757 0.737 0.719 0.706 0.695 0.676 0.660 0.766 

 4 1.007 0.978 0.955 0.937 0.924 0.907 0.895 1.012 

 5 1.265 1.227 1.196 1.173 1.159 1.147 1.145 1.261 

 6 1.527 1.479 1.441 1.413 1.396 1.391 1.406 1.511 

 7 1.788 1.729 1.683 1.648 1.629 1.632 1.670 1.758 

 8 2.048 1.978 1.921 1.880 1.857 1.869 1.935 2.001 

          

2 lags Horizon         

 1 0.161 0.155 0.153 0.152 0.150 0.147 0.146 0.157 

 2 0.309 0.287 0.282 0.279 0.278 0.279 0.283 0.284 

 3 0.502 0.458 0.447 0.442 0.440 0.441 0.452 0.446 

 4 0.713 0.643 0.625 0.618 0.615 0.621 0.643 0.616 

 5 0.949 0.852 0.824 0.814 0.809 0.818 0.854 0.801 

 6 1.206 1.081 1.042 1.025 1.016 1.023 1.073 1.001 

 7 1.463 1.310 1.260 1.236 1.222 1.226 1.292 1.192 

 8 1.730 1.554 1.493 1.464 1.444 1.446 1.530 1.391 

          

3 lags Horizon         

 1 0.150 0.147 0.145 0.143 0.143 0.142 0.144 0.157 

 2 0.286 0.282 0.282 0.283 0.285 0.290 0.298 0.291 

 3 0.462 0.451 0.450 0.452 0.454 0.466 0.486 0.456 

 4 0.655 0.637 0.633 0.634 0.638 0.659 0.695 0.628 

 5 0.874 0.844 0.836 0.836 0.841 0.872 0.927 0.812 

 6 1.113 1.069 1.054 1.047 1.048 1.082 1.155 1.010 

 7 1.355 1.294 1.269 1.255 1.251 1.283 1.373 1.194 

 8 1.605 1.528 1.496 1.475 1.465 1.495 1.604 1.388 

          

4 lags Horizon         

 1 0.150 0.149 0.148 0.147 0.146 0.145 0.146 0.157 

 2 0.287 0.284 0.285 0.286 0.286 0.286 0.290 0.298 

 3 0.463 0.457 0.457 0.456 0.454 0.450 0.461 0.472 

 4 0.656 0.646 0.649 0.650 0.647 0.645 0.666 0.658 

 5 0.875 0.858 0.863 0.867 0.866 0.869 0.906 0.862 

 6 1.114 1.085 1.088 1.092 1.090 1.093 1.144 1.080 

 7 1.356 1.312 1.311 1.312 1.306 1.306 1.371 1.290 

 8 1.606 1.549 1.544 1.543 1.534 1.531 1.612 1.510 

Note: Forecasting horizon is given in quarters. 
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Table A4. RMSFEs at different forecasting horizons for model estimated by CGLS and OLS – 

United States. 

 Gain 0.01 0.02 0.03 0.04 0.05 0.075 0.10 OLS 

1 lag Horizon         

 1 0.242 0.244 0.245 0.245 0.246 0.245 0.243 0.245 

 2 0.452 0.457 0.460 0.462 0.464 0.464 0.462 0.455 

 3 0.647 0.657 0.663 0.667 0.670 0.673 0.672 0.648 

 4 0.825 0.840 0.850 0.858 0.863 0.869 0.870 0.823 

 5 0.999 1.020 1.035 1.047 1.055 1.066 1.070 0.994 

 6 1.184 1.212 1.233 1.248 1.260 1.277 1.286 1.177 

 7 1.363 1.400 1.426 1.446 1.462 1.488 1.503 1.353 

 8 1.531 1.576 1.609 1.634 1.654 1.689 1.714 1.516 

          

2 lags Horizon         

 1 0.203 0.187 0.180 0.176 0.175 0.178 0.181 0.171 

 2 0.402 0.368 0.348 0.339 0.337 0.344 0.357 0.319 

 3 0.602 0.553 0.523 0.510 0.509 0.525 0.550 0.479 

 4 0.792 0.728 0.690 0.675 0.675 0.698 0.734 0.644 

 5 0.983 0.902 0.856 0.841 0.843 0.875 0.921 0.812 

 6 1.189 1.092 1.039 1.023 1.028 1.067 1.119 0.995 

 7 1.392 1.277 1.217 1.204 1.213 1.262 1.324 1.163 

 8 1.587 1.454 1.389 1.378 1.392 1.454 1.528 1.318 

          

3 lags Horizon         

 1 0.207 0.192 0.183 0.179 0.178 0.181 0.187 0.176 

 2 0.421 0.388 0.364 0.351 0.348 0.359 0.379 0.328 

 3 0.630 0.586 0.551 0.533 0.532 0.567 0.620 0.491 

 4 0.824 0.767 0.724 0.704 0.707 0.775 0.877 0.659 

 5 1.016 0.943 0.889 0.868 0.876 0.989 1.171 0.825 

 6 1.224 1.133 1.070 1.046 1.058 1.217 1.510 1.005 

 7 1.428 1.320 1.248 1.224 1.241 1.466 1.932 1.168 

 8 1.625 1.500 1.420 1.397 1.422 1.730 2.448 1.319 

          

4 lags Horizon         

 1 0.202 0.191 0.184 0.181 0.181 0.188 0.197 0.178 

 2 0.414 0.387 0.366 0.356 0.354 0.370 0.393 0.330 

 3 0.650 0.607 0.570 0.549 0.545 0.576 0.626 0.492 

 4 0.861 0.810 0.760 0.731 0.726 0.786 0.883 0.656 

 5 1.057 0.997 0.937 0.903 0.900 1.001 1.165 0.822 

 6 1.252 1.183 1.117 1.083 1.085 1.238 1.503 1.002 

 7 1.443 1.363 1.293 1.261 1.272 1.504 1.927 1.166 

 8 1.629 1.538 1.463 1.434 1.455 1.789 2.446 1.319 

Note: Forecasting horizon is given in quarters 
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Figure A1. Sum of estimated autoregressive coefficients from AR(4) models for the UK 
unemployment rate. 
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Note: CGLS gives the sum of estimated of autoregressive coefficients from model estimated with CGLS using a gain of 0.10; 

estimation is initialised at 1971Q2. OLS gives the sum of recursively estimated autoregressive coefficients from model estimated 

with OLS; sample is 1970Q1-1983Q1/2007Q4. 

Figure A2. Sum of estimated autoregressive coefficients from AR(2) models for the US 
unemployment rate. 
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Note: CGLS gives the sum of estimated of autoregressive coefficients from model estimated with CGLS using a gain of 0.10; 

estimation is initialised at 1971Q2. OLS gives the sum of recursively estimated autoregressive coefficients from model estimated 

with OLS; sample is 1970Q1-1983Q1/2007Q4. 
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