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Abstract. This is an instruction manual for a MATLAB (Windows) program to

analyze reduced form and structural vector autoregressions (VAR), possibly with in-

formative priors on the steady state. All user inputs and data are supplied to MATLAB

via a user-friendly Microsoft Excel interface. The package includes methods for i) sim-

ulating from the posterior distribution of the VAR model parameters, ii) dynamic un-

conditional and conditional forecasting, iii) forecast evaluations, iv) impulse response

analysis, v) variance and historical decompositions, vi) model diagnostic tools, such as

plot of actual and �tted values, residual histograms and correlograms.
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Disclaimer of warranty and limitation of liability

This MATLAB package BayesVAR comes with no warranty. The author of BayesVAR,

Mattias Villani, cannot be held liable for any damages arising out of the use of this pro-

gram.
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1. Getting started

BayesVAR is a set of MATLAB 7 routines for analyzing Bayesian vector autore-

gressions (VAR). All user inputs (data, model, estimation, simulation and forecasting

settings etc.) are supplied via an Excel workbook, which is then read and analyzed by

MATLAB.

To start a new project it is suggested that you go through the following steps:

� Use Windows Explorer to create a new subfolder under c:nBayesVARnProjects
(assuming that BayesVAR is located on the c-drive). Let us, as an example,

name this folder MyProject.

� Create a BayesVAR Excel workbook with all data and model inputs (tip: modify
the existing workbook FirstExample.xls in c:nBayesVARnProjectsnFirstExample).
Save the created BayesVAR Excel workbook in the folder MyProject as MyWork-

book.xls.

� Start MATLAB and set the current directory to c:nBayesVARnProjectsnMyProject.
� Place the BayesVAR folder and all its subfolders on the MATLAB path, so that
MATLAB can access the BayesVAR code. This can be done by choosing the

Set Path ... option on the File menu and then choosing Add with Subfolders ...

Save the changes to the MATLAB path. This needs to be done only once.

� Type BayesVAR at the MATLAB prompt and press the enter key.
� Select the BayesVAR Excel workbook MyWorkbook.xls in the �le input dialog
window.

� BayesVAR then reads all data and settings, performs the computations, and

displays the results in text �les and graphs.

2. Models in BayesVAR

The base model used in the BayesVAR package is the (reduced form) Vector AutoRe-

gressive (VAR) process with K lags:

(2.1) xt =
PK

k=1�kxt�k + �dt + ut; (t = 1; :::; T );

where xt is p-dimensional column vector with observations on p time series at time t:

dt contains the exogenous variables, deterministic constants and trends. The ut are the

reduced form shocks which are assumed to be iid multivariate normal with zero mean
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and covariance matrix �. The BayesVAR package can also work with structural VARs:

(2.2) �xt =
PK

k=1�kxt�k + �dt + "t; (t = 1; :::; T );

where � is a p� p matrix with contemporaneous coe¢ cients, and the structural distur-
bances "t are iid normal with zero mean and identity covariance matrix. BayesVAR uses

zero restrictions on the coe¢ cient in � (including Cholesky/Recursive identi�cation) to

identify the model.

BayesVAR can also handle the steady-state formulation of the VAR (Villani, 2007)

(2.3) xt �	dt =
PK

k=1�k(xt�k �	dt�k) + ut; (t = 1; :::; T );

where 	dt is an explicit formulation of the process� steady state. The advantage of

this parametrization is that priors can be formulated directly on the steady state. The

Steady-State VAR can also be analyzed on structural form.

3. Priors in BayesVAR

The prior on the reduced form errors covariance matrix � is the usual non-informative

prior for a covariance matrix:

p(�) / j�j�(p+1)=2 :

All coe¢ cients in �1; :::;�K are assumed to be independent and normally distributed

a priori (see below on imposing stationary, however). The mean of the coe¢ cients are

assumed to be zero with the exception of the diagonal elements in �1 that can be set

to any number (see column Mean on First Lag in the Excel sheet Endoproperties). If

the standard form of the VAR in (2.1) is used, then the elements in � are normally

distributed, mean zero and standard deviation �5 > 0. If the steady state VAR in

(2.3) is used, then the prior on the elements of 	 are normal, with means and standard

deviations speci�ed in the Excel sheet Endoproperties. If the structural form of the

model in (2.2) is used, then the unrestricted elements of � are assigned uniform priors.

Let �(k)ij be the coe¢ cient on the jth variable�s kth lag in the equation for the ith

endogenous variable (i.e. �(k)ij relates xj;t�k to xi;t). Following Litterman (1986), we

model the prior standard deviation of �(k)ij as

S(�
(k)
ij ) =

(
�1si
k�3sj

if i = j (own lag)
�1�2si
k�3sj

if i 6= j (cross-equation lag)
;
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where �1 > 0 is the overall shrinkage, 0 < �2 � 1 is the cross-equation shrinkage,

�3 > 0 is the lag decay parameter. si is the standard deviation of the residuals from

�tting an univariate AR(K) process with exogenous variables dt to the ith endogenous

variable. The si are included to control for the di¤ering scales of the variables. There

is an additional shrinkage parameter (0 < �4 � 1) that is very useful in small open

economy models. If �(k)ij is a coe¢ cient that models the e¤ect of a variable in a small

economy on a variable in a large economy, then prior standard deviation is modelled as

S(�
(k)
ij ) =

�1�2�4si
k�3sj

;

where 0 < �4 � 1. Block exogenity can therefore be implemented with an arbitrarily

large probability by setting �4 to an increasingly small number.

The Litterman prior makes the prior tighter around zero for longer lags. When data

contains seasonality it may be preferable to handle the seasonal lags (lag 4,8,12, etc.

for quarterly data) di¤erently from the non-seasonal lags. The prior hyperparameter

0 < �6 � 1 can be used to implement this. As an example, if �6 = 1; then lag 4 has the
same standard deviation as lag 1, lag 8 has the same standard deviation as lag 2 etc.

See the the Excel sheet Options/Load prior from �le on how to specify a general

multivariate prior for the VAR coe¢ cients.

4. Simulating from the posterior distribution

BayesVAR simulates from the joint posterior distribution of all model parameters

using Gibbs sampling. Gibbs sampling simulates iteratively from the full conditional

posterior distributions, the posterior distribution of a parameter subset (block) con-

ditional on all other parameters of the model. A parameter block is drawn from the

posterior distribution by conditioning on the most recent draw of the other model pa-

rameters.

In the Standard BVAR in (2.1) we simulate from the following two blocks of parame-

ters (Karlsson and Kadiyala, 1997)

vec�j� � Multivariate Normal

�j� � Inverted Wishart

where � = (�1; ::::;�K ;�). Note here that � is sampled in the same block as the

dynamic coe¢ cients �1; ::::;�K . In the Steady-State VAR (2.3) we use three updating
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blocks (Villani, 2007):

vec�j�;	 � Multivariate Normal

�j�;	 � Inverted Wishart

vec	j�;� � Multivariate Normal.

If a non-recursive Structural VAR is used (2.2), then the contemporaneous parame-

ters, �, are simulated using the updating step in Waggoner and Zha (2003b). In this

case � is of course not simulated.

There is an option in BayesVAR to discard �-draws that implies a non-stationary

VAR process (Restrict VAR to be stationary).

BayesVAR obtains the posterior distribution of any (nonlinear) function of the para-

meters, e.g. impulse responses and variance decompositions, by evaluating that function

on every parameter draw.

5. Simulating from the forecast distribution

Let � denote the set of all model parameters, e.g. � = (�;�;	) in the Steady-State

BVAR. The h-step-ahead dynamic forecast density at time T is then

p(xT+1; :::; xT+hjx(T )) =
Z
p(xT+1; :::; xT+hj�; x(T ))p(�jx(T ))d�;

where x(T ) = (x1; :::; xT ) contains all historical data up to time T . To simplify nota-

tion, we have not explicitly written out the conditioning on the deterministic variables,

d1; :::; dT . We obtain draws from the forecast density as follows:

(1) Simulate a � from the posterior distribution by Gibbs sampling

(2) Simulate the VAR process h-steps forward, conditional on the generated � in

Step 1.

(3) Repeat Steps 1 and 2 until convergence to the predictive density has been ob-

tained.

The collection of all these dynamic simulations (one for each �-draw) is then used to

approximate the point forecast (median) and the forecasting intervals (quantiles of the

forecasting density).

BayesVAR can also produce conditional forecasts, i.e. forecasts of xt conditional on

pre-speci�ed paths for a subset of the endogenous variables in xt. Conditioning on

paths of the endogenous variables puts restrictions on the structural errors during the
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forecasting period, "T+1; ::::; "T+h. Section 8.5 gives the details of BayesVARs �exible

conditional forecasting routine.

6. Structural analysis

BayesVAR computes and graphs the posterior distribution of variance decompositions

and impulse responses. The VAR models are identi�ed with zero-restrictions on the

contemporaneous coe¢ cients in � in (2.2). The recursive/Choleski identi�cation is also

an option. See Section 8.4 for details on how to implement an identi�cation scheme in

BayesVAR.

BayesVAR also computes various historical decompositions. A historical decompo-

sition answers the question: what would the data have looked like if a subset of the

shocks had been zero throughout the estimation period? This can be a very useful tool

for understanding the driving forces (shocks) in the economy. BayesVAR also has the

options to turn o¤ a subset of shocks only from a certain date and onward.

7. Forecast evaluation

BayesVAR assesses out-of-sample forecasting performance using a sequential forecast-

ing procedure with the VAR parameters estimated using data up to a speci�ed time

period T (First forecast date in the Option sheet) where the dynamic forecast distri-
bution of xT+1; :::; xT+h is computed. The estimation sample is then extended to include

the observed data at time T+1 and the dynamic forecast distribution of xT+2; :::; xT+h+1
is computed. This is prolonged until the speci�ed Last forecast date in the Options
sheet.

BayesVAR evaluates the accuracy of point forecasts, interval forecasts and density

forecasts. Many di¤erent measures of accuracy (univariate and multivariate) can be

used, see Table 1 for a brief description and Adolfson, Lindé and Villani (2007) for

details. BayesVAR also plots the actual data and all the sequential forecast paths

(Cascade plot). The posterior estimates of the VARs steady state are also plotted over

the forecast evaluation period. The current version of BayesVAR does not support

real-time forecast evaluations with data that are subject to revisions.

BayesVAR includes a few commonly used benchmark forecasts. The no-change
forecast produced at time t is de�ned as

x̂t+hjt = xt, (h = 1; :::; H).
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Univariate Multivariate
Point forecasts Root Mean Squared Errors (RMSE) LogDetMSSE

Mean Absolute Errors (MAE) TraceMSSE
Mean Absolute Percentage Errors (MAE)
Mean Percentage Error (MPE)

Interval forecasts Empirical coverage -
Bayes test for hit sequences

Density forecasts Log Predictive Density Score (LPDS) LPDS
Table 1. Measures of Out-of-Sample Forecast Accuracy in BayesVAR.

BayesVAR produces two di¤erent no-change forecasts for variables in growth rates, one

de�ned on the period-to-period growth rates (e.g. ln(xt+1=xt)) (NoChange) and the

other on yearly growth rates (e.g. ln(xt=xt�4) for quarterly data) (NoChange Yearly).

The recent mean forecast is the mean of the r most recent realized values

x̂
(r)
t+hjt = r

�1Pr
i=1 xt�i+1, (h = 1; :::; H).

8. Managing the BayesVAR Excel workbook

BayesVAR constructs a data base with all variables in the Endo and Exo sheets of the

BayesVAR workbook. The user can then choose to model a subset of the variables (as

set in the Options sheet, see Appendix A). All references to variables in the program is

with respect to the original data base, not the subset of variables in the current model.

As an example, assume that the data base contains six variables (x1; :::; x6), but the user

chooses to include only variables 2, 3 and 5 in her model. If the user then wants to plot

the forecasts of only the two last variables in the modelled VAR system (x3 and x5),

the input to BayesVAR (Plot predictions for variable in the Options sheet) should be

[3 5], not [2 3]. The following subsections describe each of the sheets in the BayesVAR

Excel workbook in detail.

Note: The names of the Excel sheets in the BayesVAR Excel workbook should not be
changed.

8.1. Options. The Options sheet (see the screen shots in Figure 1 and 2) contains more
than 60 settings grouped into the categories: Data, Model and Prior, Posterior

Sampling, Forecasting, Forecasting Evaluation, Model Fit, Structural

VAR and Misc. A detailed description of each option is given in Appendix A.
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8.2. Endo and Exo. The �rst column of the Endo sheet contains the dates for the
observations. The following columns contains data on the endogenous variables. The

�rst row holds the labels for the variables. An example of the Endo sheet is given in

Figure 3. The Exo sheet contains the dates and observations on the exogenous variables

(the dt in (2.1), (2.2) or (2.3)). This sheet is organized in the same way as the Endo

sheet. Note: the VAR constant (a column of ones in dt) should not be supplied by the

user, the program adds it automatically to the set of exogenous variables.

8.3. Endoproperties and Exoproperties. The Excel sheets Endoproperties (Figure
5) and Exoproperties (Figure 6) are used to declare the properties of the endogenous and

exogenous variables in the data base. The following properties are set in the Endoprop-

erties sheet.

� Large economy. Declares if a variable is a large economy variable (this only
makes sense in a multiple country model with at least one small and one big

economy). Coe¢ cients relating a variable in the small economy to a variable

in the large economy may be given additional prior shrinkage towards zero us-

ing the prior hyperparameter �4 (small economies are not likely to a¤ect large

economies), see Section 3.

� Difference. Many VARs include endogenous variables that are modelled in
�rst di¤erences of logs of the original variable (Example 1: �t = ln pt � ln pt�1,
where �t is the in�ation rate at time t and pt is a price index at time t. Example 2:

GDP growth �yt = ln yt� ln yt�1, where yt is GDP at time t). It is usually good
practice to report results (e.g. forecasts, �tted values, impulse responses) for such

variables in annual growth rates (��t = ln pt�ln pt�4, and�y�t = ln yt�ln yt�4, for
quarterly data). Such variables are called Di¤erence variables in BayesVAR and

special facilities is included in the program to deal with them (i.e. automatically

convert the forecasts to annual growth rates). An endogenous variable may

be declared as a Di¤erence variable in the Endoproperties sheet of the Excel

workbook. It is of course possible to not declare �t as a Di¤erence variable, the

forecasts are then presented in terms of �t, not ��t .

� Mean of first lag. This column sets the prior mean of the diagonal elements
in �1, the endogenous variables coe¢ cients on their own �rst lag.
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� Seasonal. Declares if a variable has seasonality and that its seasonal lags

should be shrunk toward zero in a di¤erent way from non-seasonal lags. See the

discussion of the prior hyperparameter �6 in Section 3.

� Steady-state prior. The columns to the right of the �Seasonal�column are
used to set the prior on 	 in the Steady-State VAR (2.3). The �rst two columns

(named Constant_L and Constant_U in Figure 5) always de�ne the lower and

upper limits of a prior probability interval for the constant (which is automati-

cally added by BayesVAR, it should not be given by the user in the Exo sheet).
The probability content of this interval is set in the Options sheet (Misc Op-

tions/Coverage probability of prior intervals for deterministic components). The

subsequent columns speci�es the prior on the other exogenous variables in the

same way. As an example, if four exogenous variables are used (plus a constant

which is added by the program), then there should be 10 columns to the right

of the �Seasonal�column. The last two of these columns would then together

specify the prior for the last exogenous variable. Note that these settings are

not used when the VAR is speci�ed in Standard form (2.1).

The Exoproperties sheet contains only one property: Small Economy. Declaring an

exogenous variable as Small Economy places the additional �4-shrinkage on the coe¢ -

cients on that exogenous variable in the equations for the large economy variables. As

an example, if �4 is set to a very small number (e.g. �4 = 0:01), then the small econ-

omy variables have essentially no impact on the large economy and the Small Economy

exogenous variables are essentially excluded from the equations of the large economy

variables.

8.4. Identi�cation. The Excel sheet Identi�cation can be used to specify a non-recursive
identi�cation of a structural VAR, see Figure 7 for a nearly recursive identi�cation. The

�rst column contains labels for the shocks, and the �rst row puts labels on the variables

in the system. A zero in position (i; j) of the restriction matrix means that �ij (coef-

�cient on variable j in equation i) is forced to be zero, whereas a one means that the

coe¢ cient is unrestricted in the estimation. BayesVAR warns the user if the restrictions

do not identify the system.

In addition to the identi�cation restrictions in Identi�cation, the user must specify a

coe¢ cient in each equation that will be used for normalization (restricted to be positive).
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This is done in Options/StructuralVARs/Normalizing coe¢ cients. There is also an

option to use the automatic normalization rule in Waggoner and Zha (2003a).

8.5. CondForecast. BayesVAR can produce forecasts conditional on pre-speci�ed paths
for a subset of the endogenous variables. The Excel sheet CondForecast (see Figure 8 for

an example in a seven-variable VAR) is made up of two parts. First, to the left in the

sheet, the pre-speci�ed paths for the conditioning variables are speci�ed. The columns

correspond to the endogenous variables, and the rows to di¤erent forecast horizons.

An empty cell means that the variable is not subject to restrictions at that particular

forecast horizon. It the example in Figure 8, the three foreign variables, yf , pf and rf

have pre-speci�ed paths for quarter 1-3. The domestic interest rate r is assumed to be

constant at 4 in the coming 6 quarters. Finally, the real exchange rate er is �xed to 10

during the �rst year.

BayesVAR uses the structural shocks (the " in equation 2.2) during the forecasting

period to produce these conditionings. BayesVAR allows the user to specify which

subset of the shocks (e.g. the foreign shocks) that are used to ful�ll the conditions of a

certain subset of the conditioned endogenous variables (e.g. the foreign variables). This

is speci�ed in the right hand side of the CondForecast sheet. An example is probably

the best way to explain these settings. In the example in Figure 8 there are three subsets

of shocks:

(1) The conditioning on the foreign variables, yf , pf and rf are to be ful�lled by

the �rst shock set (hence the ones in the columns to the right). Since there are

three conditioning variables here, we need three shocks in the �rst shock set.

(2) The condition on the domestic interest rate are to be ful�lled by the second

shock set (hence the number 2 in the r column). We need a single shock in this

shock set.

(3) The condition on the real exchange rate (er) are to be ful�lled by the third shock

set (hence the number 3 in the r column). We need a single shock in this shock

set.

BayesVAR now knows the subset of conditioning variables (1. yf , pf; rf 2. r

and 3. er), their pre-speci�ed paths and that it should use three shock sets to satisfy

the restrictions on the conditioning variables. The only missing information is which

of the seven structural shocks that belong to the �rst, second and third shock subset,

respectively. This is speci�ed in the Options sheet (Forecasting Options/Constructive
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shocks in conditional forecasts). In this example we set this input to [1:3; 6; 7]. This

de�nes the three shock subsets (separated by semicolon): 1. ("1; "2; "3), 2. ("6) and 3.

("7), where "j denotes the jth element of the structural shock vector ". If a recursive

identi�cation has been used, then these shocks subset may be labeled foreign shocks,

interest rate shock and exchange rate shock. With a non-recursive identi�cation, then

"6 may be given a structural interpretation as a monetary policy shock. This way the

conditional forecasts can be given a structural interpretation.

It is important to understand how BayesVAR uses the structural shocks to produce

conditional forecasts. A conditional forecast at a given horizon h is computed as follows:

� The shocks that are not used to produce a conditioning at horizon h are ei-
ther set to zero or drawn from their normal distributions (this is set by Op-

tions/Forecasting Options/Non-constructive shocks are drawn from distribu-

tion).

� The �rst shock set (labelled 1 in the CondForecast sheet) is now injected so

that the �rst set of endogenous conditioning variables meet their conditions

(conditional on the generated values for the non-constructive shocks).

� The second shock set is now injected so that the second set of endogenous con-
ditioning variables meet their conditions (conditional on the values for the non-

constructive shocks and the �rst shock set), and so on for all the shock sets.

It is apparent from the above description that the choice of conditioning variables

and shock sets must respect the structure of the contemporaneous restrictions in � (for

example, a recursive identi�cation on (yf; pf; rf; y; p; r; er) would be valid in the current

example). BayesVAR will not check this, and the code will run even if the conditional

forecasting inputs are incorrectly speci�ed in this respect, but the forecast will not

satisfy all the imposed conditions on the endogenous variables. Note also that the order

of the shock sets matter, in the sense that the shock subsets later in the order must

operate conditional on injected shocks in the subsets that come earlier in the order.

The conditioning paths for Di¤erence variables (see Section 8.3 on Di¤erence variables)

can be speci�ed as growth rates (see Options/Forecasting Options/Conditioning paths

for di¤erence variables speci�ed as annual growth).

It is also possible in BayesVAR, for example, to let a variable be unrestricted at

forecast horizons h = 1; 2; 3 and 4, and then �x it to pre-speci�ed values at h = 5

and 6, and then �nally let it be unrestricted again during the rest of the forecasting
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period. This �exibility cannot be used when the conditioning paths are speci�ed in

annual growth rates for Di¤erence variables.
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Appendix A. Details of the Options sheet

Data Options

Endogenous variables

Function: A vector with variable indices to select modelled endogenous variables in

the data base, see the Excel sheet Endo.

Format: Row vector .
Example: [1 3:4 7] �ts a VAR with variable number 1, 3, 4, 5, 6 and 7 in the data base
(Endo sheet) as endogenous variabels in the VAR.

Exogenous variables

Function: A vector with variable indicies to select the exogenous variables in the data
base, see the Excel sheet Exo.

Format: Row vector.
Example: [1 3] uses variable numbered 1 and 3 in the data base (Exo sheet) as exoge-
nous variables in the VAR.

First date of estimation sample

Function: The date of the �rst observation in the estimation sample.
Format: String.
Example: 1980Q1.
Note: The VAR with K lags uses the �rst K observations in the sample as initial

values for the lags.

First forecast date

Function: The date where the �rst sequential forecast is produced.
Format: String.
Example: 1995Q4.
Note: A forecast produced at 1995Q4 uses all data up to and including 1995Q4 to

forecast the future values for 1996Q1, 1996Q2; :::
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Last forecast date

Function: The date where the last sequential forecast is produced.
Format: String.
Example: 2002Q4.
Note: See First forecast date.

Seasonal cycle

Function: The seasonality of the data.
Format: Scalar.
Options: 1 (Yearly), 4 (Quarterly), and 12 (Monthly).
Example: 4 for quarterly data.

Detrended variables

Function: A vector with variable indices of variables that are to be demeaned and

detrended by the program.

Format: Row vector/String.
Example:[1 3:5], demeans and detrends endogenous variables 1; 3; 4 and 5.

Model and Prior Options

Lag length

Function: Lag length (K) of the VAR.
Format: Positive integer.
Example: 4.

Constant

Function: Determines how the constant and deterministic terms enter the model.
Format: String.
Options: none (no constant), standard (constant and deterministic terms enter addi-
tively as in eq. 2.1) or meanadj (steady state VAR, constant and deterministic terms

enter as in eq. 2.3).

Example: meanadj.



BAYESVAR 17

Overall tightness

Function: Prior overall tightness (�1, see Section 3) in the Litterman prior on the VAR
coe¢ cients.

Format: Positive scalar.
Example: 0:2.

Cross-variable tightness

Function: Prior cross-variable tightness (�2, see Section 3) in the Litterman prior on
the VAR coe¢ cients.

Format: Scalar in (0; 1].
Example: 0:5.

Lag decay

Function: Prior lag decay (�3, see Section 3) in the Litterman prior on the VAR
coe¢ cients.

Format: Positive scalar.
Example: 1.

Exogenity tightness

Function: Prior exogenity tightness (�4, see Section 3) in the Litterman prior on the
VAR coe¢ cients.

Format: Scalar in (0; 1].
Example: 0:01.
Note: This prior shrinkage parameter can be used to incorporate the belief that small
economies should not have a large in�uence on large economies. �4 puts additional

shrinkage toward zero for parameters that relates small economy variables to large

economy variables. Variables are classi�ed as large economy variables in the Excel sheet

Endoproperties. By setting �4 to a very small number we can enforce (essentially) exact

block recursiveness. All model parameters are still simulated, but the zero-restricted

block are always very close to zero.

Deterministic tightness

Function: Prior tightness on the deterministic variables (�5, see Section 3) in the
Litterman prior on �.

Format: Positive scalar.
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Example: 100.
Note: This prior parameter only applies to the VAR on standard form (2.1). In the

steady state VAR in (2.3), the prior on the deterministic coe¢ cients (	) are speci�ed

directly in the Excel sheet Exoproperties.

Seasonal tightness

Function: Special handling of tightness on the seasonal variables (�6, see Section 3) in
the Litterman prior on �.

Format: Scalar in (0; 1].
Example: 1.
Note: The Litterman prior makes the prior tighter around zero for longer lags. When
data contains seasonality it may be preferable to handle the seasonal lags (lag 4, 8, 12,

etc. for quarterly data) di¤erently for the non-seasonal lags. The prior hyperparameter

0 < �6 � 1 can be used to control this. As an example, if �6 = 1; then lag 4 has the
same prior standard deviation as lag 1, lag 8 has the same prior standard deviation as

lag 2 etc.

Load prior from file

Function: Determines if the Litterman prior is overridden by a user speci�ed prior
loaded from �le �ManualPrior.m�.

Format: yes / no.
Note: This �le must contain the variables mu_pi and Omega_pi if a Steady State
VAR is used. The prior is then vec(�1; :::;�K)0 � N(��;
�). If a Standard VAR is used
then the �le must contain the variables mu and Omega, and then vec(�1; :::;�K ;�)0 �
N(�;
).

Posterior Sampling Options

Number of draws (post burn-in) from posterior and predictive distrib-

utions

Function: The number of Gibbs sampling draws from posterior and predictive (fore-

cast) distributions.

Format: Positive integer.
Example: 10000.
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Load parameter and prediction draws from file

Function: Posterior draws and simulated predictions can be loaded from �le. This �eld
should contain the name of �le where the posterior draws and predictions are saved,

excluding the YEAR_PERIOD addendum which is produced by the code. See the

example below.

Format: String.
Example: If predictions for two di¤erent forecast dates are stored in Example2002Q1.mat
and Example2002Q2.mat, then this �eld should read �Example�.

Compute log posterior for each draw

Function: Determines if the log posterior is computed for each draw. This is needed
if the marginal likelihood is computed by the modi�ed harmonic mean estimator in

Geweke (1999).

Format: yes/no.

Method for computing the marginal likelihood

Function: Determines the method for computing the marginal likelihood.
Format: String.
Options: none, modharm (modi�ed harmonic, Geweke (1999)) and chib (Chib, 1995).
Note 1: BayesVAR only computes Chib�s estimate for the Steady State VAR (reduced
form or recursive identi�cation, but not for non-recursive identi�cation).

Note 2:The variable NModHarmBatches in BayesVAR.m can be changed to have the

modi�ed harmonic estimates computed sequentially throughout the posterior draws.

This is a good way to check if the marginal likelihood estimate has converged (the

marginal likelihood estimate typically converges later than the posterior distribution).

For example, by setting NModHarmBatches to 5, the marginal likelihood estimate is

�rst computed using the �rst 20% of the draws, then using the �rst 40% of the draws

and so on.

Note 3: The priors on � (reduced form) and � (Structural form) in BayesVAR are

improper (integrate to in�nity over their domain). These priors are OK to use in esti-

mation (the posterior is proper), but cannot be used for model comparison unless all

compared models have the same restrictions on � or �. Most model comparisons with

VAR can therefore be done (di¤erent lag lengths, di¤erent exogenous variables, di¤erent



20 MATTIAS VILLANI

prior on � etc.), but not comparisons where the structure of the � or � varies across

models.

Maximum likelihood

Function: Maximum likelihood estimates computed instead of Bayesian posteriors.

Format: String.
Options: none (Bayesian estimation), unrestricted, blockFIML (FIML on block-recursive
system), blockQuasi (non-iterative quasi-ML on block-recursive system, � is estimated

from an unrestricted system and then � is estimated under block-recursiveness).

Note: When maximum likelihood is used, the VAR is estimated on standard form

(maximum likelihood estimates are invariant to transformations, so this does not mat-

ter for forecasts etc.). ML standard errors are not computed by BayesVAR. The ML

standard errors can be obtained from a Bayesian estimation with �at priors (�1 large

and �2 = �3 = �5 = �6 = 1).

Restrict var to be stationary

Function: Determines if the estimated VAR is restricted to be stationary.
Format: yes / no.
Note: This option only applies to Bayesian estimation, not maximum likelihood. Non-
stationary Gibbs sampling draws are discarded.

Percentage discarded burn-in posterior draws

Function: This determines the percentage of posterior draws that are discarded as
burn-in.

Format: Scalar in [0; 100).
Example: 5.

Thin-out frequency for draws of ir, hist. decomp. and structural

shocks

Function: Determines how often posterior draws of IR etc. are stored. Does not a¤ect
draws of VAR parameters and forecasts.

Format: Positive integer < NIter (number of posterior draws).
Example: 1 (very draw is stored), 10 (every tenth draw is stored).
Note: Setting this number larger than one speeds up computations and reduces memory
requirements. The drawback is that fewer draws are used to approximate the posterior
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distribution of IRs etc. This loss of estimation precision may not be very large, however,

because thinning out the posterior draws also reduces the autocorrelation in the draws.

Forecasting Options

Number of periods to forecast

Function: Number of periods ahead to forecast (dynamic forecasts).
Format: Positive integer (zero allowed).
Example: 12.

Plot the forecasts

Function: Determines whether or not point forecasts (posterior median) and forecast
intervals are plotted.

Format: 0/1/2.
Options: 0 (no plotting), 1 (plot every year) or 2 (plot every period).
Example: 1.

Plot predictions for variable

Function: Determines the subset of endogenous variables plotted in the prediction
graphs.

Format: Row vector/string �all�(plots all the variables in the system) or �none�
Options: Row vector, all (plot all endogenous variables) or none (no plotting).
Example: [1 3:5 7]. Plots the forecasts for variables numbered 1; 3; 4; 5 and 7 in the
data base.

Constructive shocks in conditional forecasts

Function: Determines the subset of shocks that are constructive in the conditional
forecasts. A shock is constructive if it is used to meet the restrictions on the endogenous

variables in the conditional forecast.

Format: Semicolon-separated row vector/String.
Options: Semicolon-separated row vector / none (unconditional forecasts).
Example: [1 3; 4; 6:7]. This give the three distinct blocks of shocks i) 1 and 3, ii) 4
and iii) 6 and 7 to generate the conditions. Must match up with the info in the Excel

sheet CondForecast, see Section 8.5.
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Non-Constructive shocks are drawn from distribution

Function: Determines if the non-constructive shocks (shocks not used to produce the
conditioning on the endogenous variables) are draws from their distribution or set to

zero in the conditional forecasts.

Format: yes/no.

Historical decomposition of shocks

Function: The shocks for which the historical decomposition are computed.
Format: Semicolon-separated row vector/String.
Options: Semicolon-separated row vector / none (no decomposition).
Example: [1 3; 4] will graph actual data and historical pattern that would have oc-
curred if i) only shocks 1 and 3 or ii) only shock 4 had hit the economy.

Note: The decomposition is always computed for the baseline scenario without any
shocks. Shocks can be switched o¤ during the whole estimation period or only from a

certain time period and forward. See Adolfson, Andersson, Lindé, Vredin and Villani

(in press) for an example.

Start shutting down historical shocks at date

Function: The date when the shocks are shut down in the historical decomposition.
See also the companion option Historical decomposition of shocks above.

Format: String.
Options: Date string / �rst (shocks are shut down from �rst observation in estimation

sample and onwards).

Example: 1995Q4.
Note: See Adolfson, Andersson, Lindé, Vredin and Villani (in press) for an example.

Variables to plot in the historical decompositions

Function: Determines which variable are plotted in the historical decompositions.
Format: Row vector.
Options: Row vector / all
Example: [4 5 6]. Forecasts are plotted for variables 4; 5 and 6.
Note: See Adolfson, Andersson, Lindé, Vredin and Villani (in press) for an example.

Scenarios to plot in the historical decompositions

Function: Determines which scenarios are plotted in the historical decompositions.
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Format: Row vector.
Options: Row vector / all
Example: [1 3]. Forecasts from scenario 1 and 3 are plotted.

Note: See Adolfson, Andersson, Lindé, Vredin and Villani (in press) for an example.

Forecasting Evaluation Options

Forecast evaluation horizons

Function: Forecast horizons where forecasts are evaluated.
Format: Row vector / Empty vector (no evaluation).
Example: [1:4 8 12 16]

Univariate measures of point forecast accuracy

Function: Determines which accuracy measures are printed to �le. If e.g. [1 2 3 4], all
of RMSE, MAE, MAPE, MPE are printed.

Format: Row vector.
Options: 1 (RMSE, root mean squared error), 2 (MAE, mean absolute error), 3
(MAPE, mean absolute percentage error), 4 (MPE, mean percentage error).

Example: [1 4] computes and prints RMSE and MPE.

Number of past observations in recent mean forecast

Function: This speci�es the number r of past observations used in the construction of
the RecentMean benchmark forecast (Section 2).

Format: Positive integer / Row vector.
Example: 12.
Note: This may be a row vector with one element for each sequential forecast date so
that di¤erent number of past observations may be used at each forecasting period.

Variable subsets for multivariate measures of forecast accuracy

Function: The subsets for which the multivariate measures of point forecast accuracy
(LogDetMSFE, trace MSFE, LPDS) are computed.

Format: Semicolon-separated row vector / none (no evaluation) / all (a single subset
consisting of all endogenous variables).
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Example: [1:7; 1; 1:3]. LogDetMSFE, TraceMSFE and LPDS are computed on the
three subset of endogenous variables: i) 1; 2; 3:::; 7, ii) 1, and iii) 1; 2; 3.

Note: See Adolfson, Lindé and Villani (2007) for more details.

Scale matrix for trace of MSFE matrix

Function: Determines the choice of scale matrix for the TraceMSFE measure.
Format: String.
Options: stdev (ScaleMatrix is a diagonal matrix with the diagonal elements equal
to inverse of estimated standard deviations in past data, see also the next setting be-

low.) / identity or none (Identity/no scaling) / �lename (scale matrix is loaded from �le

��lename.mat�).

Example: identity.
Note: See Adolfson, Lindé and Villani (2007) for more details.

First date for computing scale matrix from data

Function: If option none is chosen for the scale matrix, then scale matrix is set equal
to the covariance matrix based on past data. This options sets the �rst date for this

estimation sample.

Format: String.
Example: 1993Q1.

Variables in forecast cascade plot

Function: Determines which variables are plotted in the cascade graph.
Format: Row vector / string
Options: none (no plotting), all (all variables plotted), vector.
Example: [1 3 5], plots forecast cascades for variables 1; 3 and 5:

Forecast cascades in separate plots for each variable

Function: Determines if variables in the forecast cascades are plotted in the same �gure
or one �gure for each variable etc.

Format: 0/1/2.
Options: 0 (every variable in a separate �gure), 1 (plot variables in multiple 2-by-2
subplots) or 2 (all variables in the same �gure).
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Options for Assessing Model Fit

Plot residuals for variable

Function: Determines the set of variables that are plotted in the residual graphs.
Format: Row vector / string
Options: Row vector / none (no plotting) / all (all variables plotted).
Example: [1 3 5], plots residuals for variables 1; 3 and 5:
Note: Actual and �tted values of Di¤erence variables are transformed to annual growth
rates, but residuals are plotted in the form used in the estimation.

Compute fit and residuals based on posterior median estimates

Function: Determines if model �t and residuals are computed conditional on point
estimates (posterior median) of the parameters or as a point estimate (median) in the

posterior distribution of the model �t/residuals.

Format: yes/no
Example: yes, model �t and residual are computed conditional on point estimates of
the parameters.

Plot actual vs fitted (time series plot)

Function: Time plot of actual data and �tted values.
Format: yes / no.

Plot actual vs fitted (crossplot)

Function: Scatter plot of actual data vs �tted values.
Format: yes / no.

Plot actual residuals

Function: Plots unscaled residuals as a function of time.
Format: yes / no.

Plot residual autocorrelation

Function: Determines the number of lags in the residual autocorrelogram.
Format: Positive integer (zero allowed).
Example: 12.
Note: If this is set to zero, then the autocorrelogram is not computed.
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Plot residual histograms

Function: Plots histograms of the residuals.
Format: yes / no.

Computing the steady state

Function: Determines if the steady state (unconditional mean) of the process is com-
puted.

Format: yes / no.

Plotting steady state over time

Function: Determines if the steady states are plotted as a function of time. This only
applies when sequential forecasts are made.

Format: yes / no.

Convert fitted values of difference variables to annual growth

Function: Determines if the �tted values of Di¤erence variables are converted to annual

growth rates.

Format: yes / no.

Options for Structural/Identified VARs

Structural VAR identification

Function: The form of restrictions on the contemporaneous parameters.

Format: String.
Options: none (reduced form) / recursive (Choleski, lower triangular) / non-recursive
(general zero restrictions using the pattern of zeros in Identi�cation sheet)

Normalizing coefficients

Function: Indices for simultaneous coe¢ cients that are normalized to be positive.
Format: Vector / String.
Options: Row vector / NaN (Waggoner-Zha (2003a) normalization) / Empty Vector
(Waggoner-Zha (2003a) normalization).
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Example: [2 3]. In the bivariate system, the �rst equation is normalized on the second
unrestricted coe¢ cient, the second equation is normalized on the third unrestricted

coe¢ cient.

Note: The number of elements in the row vector input has to be equal to the number
of equations in the system.

IR horizon

Function: The number of future time periods to plot in the impulse response functions.
Format: Positive integer.
Example: 16.
Note: The impulse responses are all plotted in the same �gure. The function SomeIm-
pulse.m can be used to plot the IRs from a single shock on selected subset of the

variables in a separate �gure. BayesVAR.m contains some commented lines that does

this exercise (search for SomeImpulse in BayesVAR.m to �nd it).

Convert to yearly growth rates in impulse response function

Function: Determines if the impulse responses for Di¤erence variables are presented as
yearly averages or in �rst di¤erences.

Format: yes / no.
Note: For quarterly data, the three quarters before the shock are set to zero. For
monthly data, the 11 quarters before the shock are set to zero.

Degrees of freedom correction of ML (recursive identification)

Function: Determines whether or not to use the degrees of freedom correction of � in

the ML estimation.

Format: yes / no.

Forecast Error Variance Decomposition

Function: Horizons were the Forecast Error Variance Decomposition are computed.
Format: Row Vector / String.
Options: Row vector / all (all horizons from 0 to the impulse response horizon) / none

(no decomposition).

Example: [0 4 8 12], plot the Forecast Error Variance Decomposition at horizons 0; 4; 8;
and 12:
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Note: The Bayesian point estimates of the forecast error variance decompositions
(FEVD) are medians over the posterior draws of the FEVDs. They need not sum

to 100% for each variable. The mean of the FEVD distribution sums to one (the vari-

able MeanFEVD contains the mean of the FEVD). The maximal FEVD horizon cannot

exceed the IR horizon.

Store and plot posterior draws of structural shocks

Function: Determines if posterior draw of structural shocks are stored and subse-

quently plotted as a function of time.

Options: yes / no.

Misc Options

Save results to file

Function: Save predictions, posterior draws etc to a .mat �le with the given name.
The last estimation period will be added to the �les�names.

Format: String.
Example: ExampleFile.

Save posterior sample of parameters

Function: Save posterior draws to �le?
Format: yes / no.

Print estimation summary to file

Function: Print point estimates, standard deviation and Bayesian t-ratios to txt-�le.
Format: yes / no.
Note: This �le should open in automatically in Windows Notepad.

Length of past in prediction plots

Function: The number of historical data points plotted before the predictions in the
graphs.

Format: Positive Integer.
Example: 12.
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Highest Posterior Density (HPD) prediction intervals

Function: Determines if HPD intervals are to be computed.
Format: yes / no.
Options: yes (HPD) / no (equal tailed intervals)
Note: HPD intervals are time-consuming.

Coverage probability of prior intervals for deterministic components

Function: Coverage probability for the speci�ed prior interval in the mean adjusted
form (only relevant if constant=meanadj). See Excel sheet Endoproperties.

Format: Scalar in (0; 1).
Example: 0:95 means that prior probability intervals speci�ed for 	 in Endoproperties
sheet are 95% intervals.

Coverage probability of forecast/ir/fevd bands

Function: Row vector which may contain up to three coverage probabilities for uncer-
tainty bands.

Format: Row Vector.
Example: [0.5 0.75 0.95] would display 50%, 75% and 95% probability bands for

impulse responses and predictions.

Note: The colors of the uncertainty bands may be changed in PredSummary.m (fore-

casts) or ImpulseSummary (IRs). Change the colormap matrix colorband under USER

INPUT in the code.

Loop on quantity

Function: The program can repeat all the computations for di¤erent values of certain
key parameters (e.g. lag length). This input determines the quantity that is looped

over.

Options: none / LagLength / lambda1 / lambda2 / lambda3 / lambda4 / lambda5 /
lambda6.

Example: lambda2.
Note: This is very useful for sensitivity analysis. E.g. how would the out-of-sample
forecast performance change if �1 was set to another value?
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Loop over values

Function: This determines the set of values on which loopquantity loops over.
Format: Row vector.
Example: [1:5]. If loopquantity is set to LagLength, then the program repeats all
computations for lag length K = 1; 2; :::; 5:

Plot and print at every sequential forecast date

Function: If yes, then plots and print-outs are produced at every forecast date, always
according to the other options. If no, only plots and prints at the �nal estimation

date and most other inputs are overridden at the sequential forecast dates. Forecast

are plotted even if this option is set to no, but most of the model diagnostics (residual

plots, impulse responses etc) are only plotted at the �nal forecast date.

Format: yes / no.

Random number generator seed

Function: Sets the seed of the random number generator.

Format: String/Scalar.
Options: random (seed is set randomly using the CPU clock) or a scalar.
Example: 1223.
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Figure 1. First half of the Options sheet in the BayesVAR Excel workbook.
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Figure 2. Second half of the Options sheet in the BayesVAR Excel workbook.
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Figure 3. The Endo sheet in the BayesVAR Excel workbook.
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Figure 4. The Exo sheet in the BayesVAR Excel workbook.
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Figure 5. The Endoproperties sheet in the BayesVAR Excel workbook.
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Figure 6. The Exoproperties sheet in the BayesVAR Excel workbook.
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Figure 7. The Identi�cation sheet in the BayesVAR Excel workbook.
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Figure 8. The CondForecast sheet in the BayesVAR Excel workbook.


