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1. INTRODUCTION

Parameter constancy is a key assumption in econometric models. If it is violated,
inference about the parameters may be misleading as well as any policy implications
drawn from the model. The accuracy of post-sample forecasting is affected as well.
Not  surprisingly, testing parameter constancy in linear models . has attracted
considerable attention in the literature. A recent bibliography of this area is Hackl
and Westlund (1989): for surveys, see Krdmer and Sonnberger (1986, chapter 4), and

Tsurumi (1988).

A standard assumption underlying some parameter constancy tests is that if the
parameters change, they change once during the observation period, so that the linear
model contains a structural break. The classical test of Chow (1960) assumed the
possible break-point to be known. This may often be too strong an assumption in
practice and considerable efforts have been made in the literature to develop tests
without it. Brown et al. (1975) derived the CUSUM and CUSUMSQ tests based on
recursive residuals assuming that the break-point or break-points were unknown and
that all regressors were independent of the disturbances. Krémer et al. (1988) showed
that the CUSUM test retains its asymptotic significance level even if the model
contains lags of the dependent variable. Ploberger and Krimer (1992) showed how the
CUSUM test can be carried out using OLS residuals thus aveiding the recursive

estimation of regression coefficients.

Recently, the theory of weak convergence and f unctional central limit theorems have
become important in the statistical theory of testing parameter constancy. Sen (1980)

and Ploberger et al. (1989) considered a test called the fluctuation test based on
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comparisons between parameter estimates from the partial samples and those of the
complete sample. The regressors of the model were assumed stationary. Andrews (1989)
derived the asymptotic null distribution of the sequential likelihood ratio test
(Quandt, 1960) of parameter constancy. He also showed that this test has nontrivial
local asymptotic power against all alternatives of nonconstant parameters. Ploberger
et al. (1989) contained a corresponding result for the fluctuation _test. Chu and
White (1991) extended the distribution results of Andrews to nonstationary
regressors. They then derived tests for the constancy of the trend and the parameters
in the cointegration relationship. All the above tests are based on the assumption

that if the parameters are nonconstant they are deterministic.

Another strand of literature is concerned about the case in which the alternative
to constancy is that the parameters are stochastic and fluctuate according to some
time series model. LaMotte and McWhorter (1978) assumed that if the nuil is not true
the parameters follow a random walk and constructed an exact F test for testing
against that aliernative. Assuming the same aiternative Nyblom and Makeldinen (1983)
derived locaily most powerful tests. Nyblom (1989) continued that work considering
tests based on maximum likelihood estimation and also showed that both the random
walk type variation and a single break-point can be regarded as special cases of a
more general set-up. Hansen (1990) further extended Nybldm’s (1989) work to cover

other than maximum likelihood estimators.

The starting-point of the present paper is that the alternative to parameter
constancy is deterministic change in parameters over time. A major difference between
the approach here and that taken in several other papers is that the change in

parameters (if any) is assumed to be smooth over time. This may often be a more
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realistic assumption than that of a single structural break. Discrete change in
parameters emerges as a special case within this more general framework. Another
difference is that the alternative to the null of parameter constancy is a parametric
one. Although a rejection of the null hypothesis can in practice hardly be taken to
mean that the alternative is true, it is possible to estimate the alternative and try
to find out in which part of the sample the constancy assumption seems.to break down.
This should often be helpful in respecifying an inadequate model. Our tests resemble
the one discussed in Farley et al. (1975) in which the alternative to parameter
constancy was that the parameters change as a linear function of time. This was taken
to be an approximation to a single structural break with an unknown break-point. The
present paper gives another justification to that approximation. The plan of the
paper is as- follows. In section 2 we introduce the nonlinear model that provides the
framework for testing parameter constancy. In section 3 tests for testing this
hypothesis are derived. Section 4 discusses the specification of the changing
parameter model in the case parameter constancy is rejected. In section 5 we
investigate the small-sample behavior of our tests by simulation and compare that
with power properties of some competitors. Section 6 contains an example and section

7 concludes.



2. THE SMOOTH TRANSITION REGRESSION MODEL

Consider the following smooth transition regression (STR) model

= Mo+ x'mF(z)+u, t=1,...,T
Yy % Lt 2 ( t) t E (1
= 3 X geevy X3 I8 v = =
where X, (1, Yygreme tep, Xt c|t) an m x 1 vecter, m pP+1+q, n
Moeew )y = {n_,.., ®m ) are m x 1 arameter vecto i
( 43 1m) 5 - - param vectors and u is an error

term with Eut = 0, Extut = 0 and Eztu‘ = 0. The function F(zt) is a transition
function allowing the model to change from Ely |x) = x'm to Ely [x) = X'+
rrz) with z. Bacon and Watts (1971) considered (1) in modelling a transition from one
regression to another. In their application, the only regressor xt was also the
transition variable. Maddala (1977, p. 2396} also suggested (1) and more recently,
Granger and Terdsvirta (1993) discussed the specification and estimation of STR

models.

In the parameter stability or structural change literature the transition variable
is a function of time; zt = t. It has been popular to assume F to be a Heaviside
function: F(t) = 0, t = t, s Fit) =1, t > t,- However, Tsurumi (1980) applied the
idea of smooth transition to modelling parameter change and we already mentioned
Farley et al. (1975) who assumed F(t) = t as the alternative to constant parameters.
Ohtani et al. (1990) also considered a model which is a variant of (1), and

Varoufakis and Sapsford (1991) had a model in which F(t) changes monotonically from

Zero to unity over time.

The STR model with z =t is more suitable for testing parameter constancy in
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dynamic linear models than representing a data generating process. Nevertheless, if
parameter constancy or linearity of the model is rejected, the parameters of (1) may
be estimated, and they may provide information about where in the sample the linear
model seems to run into trouble and how the parameters seem to change. That is an
important reason for having the STR model (1) as the alternative hypothesis to
parameter constancy. However, this requires a sufficiently flexible parameterization

of F(t) and that issue will be considered in the next section.

3. TESTING PARAMETER CONSTANCY

To parameterize (]) f ully we consider the following cases. Ejther

Flt) = F(t, 7) = (1 + exp{-y (t* + At o t+a k=13 (2)
or

F(t) = F(t, 7) = 1 - exp{-y (t - a)?). (3)
The alternative (3) in some sense corresponds to k = 2 in (2) but is more

parsimonious. We shall refer to it as "k = 2" for brevity. When k = I, the parameters
7 and @ in (2) have a clear interpretation. The reciprocal of the latter is a
parameter representing the (average) location of the parameter change. The parameter
7 is a slope parameter indicating how rapid the change is. When y — o, the change
becomes abrupt (a single structural break). When ¥ — 0, (1) becomes linear. The

change is monotonic as (2) with k = 1 is a monotonic function of t. This is
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illustrated in Figure i. However, for k = 3 the change need no longer be monotonic in
t, and rather different types of structural change can then be described by (2). If F

is represented by (3) the change is nonmonotonic and symmetric about a.

For the purpose of deriving the test we modify F in (2) by replacing it by Fit, 7)

= F{t, ¥) - 1/2 without any loss of generality. This makes ?(t, 0) = 0 so that H: ¥
0

0 in (1) becomes a natural hypothesis for parameter constancy for both the modified
(2) and (3). The alternative is Hl: ¥ > 0 in both cases. (To identify (1) under H:’
one has to assume either ¥ > Q or ¥ < 0.). If the null hypothesis is true, parameters
r:z and al,..., a (or «) remain unidentified. For other examples of lack of

identification of similar kind see e.g2. Luukkonen et al. (1988) and Granger and

Terdsvirta (1993, chapter 6).

This difficuity may be circumvented by finding a suitable approximation of F and
using it as a substitute. If k = I, 3, an obvious candidate is the first order Taylor

approximation

= i _ k k-1
Al(t, 7) = F(t, 0) + F'(t, Oy = alr(t + let + .+ onk_lt + o:k), (8)

Substituting (4) for F(t) in (1) yields
=x'n + yax'm(t + at* + +
Iy R TR, 1 T “k] vy, (5)

If k = 2, we similarly obtain

3
Az(t. ¥ = az‘;{t - a)



which gives an equation corresponding to (5) with k = 2. Combining terms in (5)

yields a reparameterized model

Vo= SA 4 (st ® vt) ¢+ u (6)
@ 2 34, = ’ = .
where 5t s 5 1 %) S § (/\O, A:. Az‘ Aal v % (yt_l.‘_., yt_p. xu.....
' W T SR R . T ; — -
xth A v,) = (v, Lot ot v)' and ¢ (o, ° 9 @), with %

0,pe1’ " qoo‘pq) . Then the null hypothesis ¥ = 0 becomes

= . =¢ =0. (7

Note that by adopting (6) we give up information about the coefficients of (5). In
return, we obtain a test statistic whose asymptotic distribution under suitable
conditions is known when (7) holds. The following theorem is needed to obtain this

result.

Theorem 1. Consider model (6) when (7) holds and assume that the roots of the

characteristic polynomial p(L) = L -y 1[‘?—' —w= ® = 0 lie inside the unit
o op

circle, the observation vector 8 is I(0), Evt = u and cov(vt) = G“. Assume

furthermore that { ut} Is a martingale dif ference sequence with .respect to an

increasing sequence of o-fields {?1} = { Yo ¥, joeeei

=1, 0,
t-1 xl,t-j J o=

T 4
yovep q,t—}'

a 2 _ 2
...} such that suptE{Iutl |S‘H) < = for some « > 2 and lim E{ut].‘}"t_‘} = ¢ almost
surely. Assume that zt at time t (s S‘t_l measurable, i.e., that xn P xqt also

depend on the previous observations. Then the least sSquares estimator
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T T
by = (Lnpp” [y

=1 =1

= ' oty i b= (' ety = ret PEVI ¢ < B
of Y = (A’, ¢’) in (6) where wT (AT, qp_r), h'. (’st, (st ® vt)), ¥ = (yl,...,
: r
yT)' is asymptotically normally distributed in the sense that (thh;)uz (u'!_r - ¥

t=1
= N(O, 7).

Proof. See the Appendix.

After establishing asymptotic normality of J.T it can be shown that the customary
test for linear restrictions Ry = r in (6) has an asymptotic xz distribution under
the null hypothesis. In our case the null hypothesis is (7) and the number of the
degrees of freedom in the nuil distribution is km. In practice we recommend the use
of the F statistic. In small samples its empirical size remains close to the nominal
one even in cases where the number of degrees of freedom in the numerator is large.
At the same time, the power of the test remains reasonable. If the null hypothesis is
large with respect to the sample size the empirical size of the xz test may be far

away from the nominal one.

We shall call the test statistics LM1 LM2 and I'Ma for k = 1, 2, 3, respectively.
They are not Lagrange Multiolier statistics but are related in the sense that testing
does not require the estimation of (1) under the alternative. Furthermore, the tests
can be carried out by means of a simple auxiliary regression. Hence we also call them

"LM type" tests.



4. MODEL SPECIFICATION

As underlined above, there is usually no reason to believe that the data have been
generated by (1) if the null hypothesis is rejected. However, for reasons already
given estimating the parameters of the alternative may still be worthwhile. This
raises the problem of choosing F(t) among the aiternatives corresponding to k = 1, 2,
3. As discussed in section 2, these choices allow us considerable flexibility.
Normally there is no economic theory available for choosing k, and we suggest a
statistical selection technique based on a short sequence of nested tests as in
Terdsvirta (1993) and Granger and Ter#svirta (1993, chapter 7). The outline of the

procedure is as follows. Assume k = 3 in (6). If (7) is tested and rejected, take (6)

as the maintained model and test

H:A =0,¢_ =0 (8)

in {(6) against its complement. If it is rejected, choose (2) with k = 3. If (8) is

accepted, test

H:2A =0,¢ =0]|A =0 ¢ =0 (9

Rejecting (9) means choosing (3) whereas accepting it means selecting (2) with k =

1. Of course, even if (9) is rejected, we can still test

but this test is our original constancy test against k = 1. It is advisable to carry
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out all these tests to obtain as clear a picture of the situation as possible through
the p-values of the tests. After choosing k, the parameters of (1) with (2) or (3)
can be estimated by nonlinear least squares. If k = 3, the nature of parameter change
implied by the estimated coefficients in ar(ta + t::ltz +oat o+ 0:3) is often difficult
to figure out just by looking at the estimates. A graph of the estimated transition
function is therefore very helpful and should accompany any estimation of the
parameters of the model. The technique is demonstrated by an application in section

6.

S. MONTE CARLO EXPERIMENTS

The small sample properties of our LM type tests were considered by simulation and
compared to those of some other tests. They included the well-known CUSUM and CUSUM
square (CUSUMSQ) tests (Brown et al., 1975), the test against the random walk
hypothesis suggested in Nyblom (1989), hereafter called the N-test, and a fluctuation
test in Chu (1989). All the values for the random variables were generated using the
random number generator in Gauss 2.0. The random variables sampled were all assumed
normai. In generating time series from linear or nonlinear models, the first 100
observations were always discarded to avoid initialization effects. The total of 1000

replications were performed for each design.

In size simulations we found that the parameterization of the null model affected the
empirical size of the test. If Y., Was included and had a large positive coefficient
then LM2 and I.M3 in particular rejected too often for T < 300. This tendency was

reversed if this coefficient was large in absolute value but negative. The empirical
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sizes of the other tests were also somewhat sensitive to the structure of the null

model.

Our tests of course performed very well when the true aiternative was a STR model,
so that those results are not reported here. We focus instead upon two special cases
where the change is either (a) a single or (b} a double structural break. As an

example, consider the following model

]
]

0.7 + 0.7 Yo, * 04 X, +u, (a) t < 9T, (b) t < nl‘r, t > nZT (10a)

<«
n

0.5 + 0.5 Veq* 0.2 X +u, (a) t = 0T, (b) 'an =t = nzT (10b)

where (u_, £)° ~ NID (0, 0.1°D),

The empirical powers of the tests for T = 100 appear in Table 1. If there is a
single structural break the LM type tests are the most powerful ones but the N-test
also has very satisfactory power. LM1 might be expected to be the most powerful of
our tests but eniarging the alternative as implied by LM2 and LM3 seems to improve
power in small samples. The CUSUM and the f luctuation tests are clearly less powerful
than LM type tests. Typically, the CUSUM test loses power if the change occurs late
and the fluctuation test if it appears early in the sample. The CUSUMSQ test has
generally lower power than the other tests for reasons explained in Ploberger and

Kr&mer (1990).
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Bleaney (1990) recently investigated the power of LMI (he called it the "linear
test") in a linear model with an intercept and another regressor. The other tests
were some variants of the Chow (1960) test, and the design contained a single
structural break. Not surprisingiy, I_M1 was the most powerful test if the break-point

assumed in applying the Chow test was not sufficiently close to the true break-point.

In the double break-point case the parameters change at an and the second time
back to their original values after T.'zT. Since the parameter change is no longer
monotonic, u.(1 should be inferior to LM2 and LMS' The results for T = 100 are in
Table 1. An interesting feature is that the power of L.M1 is very low if nl =1 - -nz
or close to it. This is due to the properties of the coefficients wn in (6) as
functions of the coefficients in the original model (1) when k = l; see Teridsvirta
(1990) for discussion. If L is fairly small and both n and n, are close to
either zero or one, I.M1 recognizes only one structural break and the power improves.
As expected, LMZ and LM3 are mostly more powerful than I.M1 in this experiment.
Interestingly enough, the N-test behaves very much like LMI' This type of a double
structural break generally seems to be difficult to detect by a CUSUM or a
fluctuation test, although the latter works weil for 'nl = 0.7, 112 = 0.9, i.e., when
the test basically recognizes a single break late in the sample. The CUSUMSQ test

again has low power throughout.

Other experiments showed that the STR alternative was flexible enough to lead to
powerful tests even when the true alternative to parameter constancy was a random
walk. If the "parameters” were assumed to follow a stationary AR(1) process the power
of the LM type and other tests diminished with the (positive) AR coefficient while

the power of the CUSUMSQ tests increased.
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6. APPLICATION

In this section we shall demonstrate the use of the tests, the specification
techniques and and the STR model (1). We consider the logarithmed volume index of
Dutech industrial production, 1961{i) to 1986(iv), (denoted yt) from OECD Economic
Indicators which is graphed in Figure 2. The series is modelled using four-quarter or
seasonal differences (L\‘yt) as in Terdsvirta and Anderson (1992) and first
differences (Ay‘) with seasonal dummy variables. From Figure 2 it appears that there
is at least one break in the trend which would correspond ta a change in the
intercept in the autoregressive model for four quarter differences. The change in
seasonality should manifest itself as a change in coefficients of the seasonal dummy

variables.

We begin by selecting an autoregressive model for A4yt. When this is done using
AIC, an AR(1) model is chosen. Because the fourth-order lag is almost significant, we
choose the AR(4) modei as a basis for our tests. This gives a considerably larger
alternative hypothesis than an AR(1) model would allow. The estimated AR(4) model is

~

4,y, =0.0097 + 0.904y, - o4y, , + 0174y, , - 0194y . +u (1)
(0.0038) (0.10) (0.14) (0.14) (0.10)

5 0.0262, LB(8-4} = 5.9 (0.21), ML(2) = 8.6 (0.013), sk = -0.027, ek = -0.26,
JB = 0.29 (0.87)

where s_ is the residual standard deviation, LB is the Ljung-Box test of no error
autocorrelation, ML is the McLeod-Li test of no autoregressive conditional

heteroskedasticity (ARCH) in the errors, sk is skewness, ek excess kurtosis and JB
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the Lomnicki-Jarque-Bera test of normality of the errors. The figures in parentheses

after the test statistics are p-values.

Note that the null hypothesis of no ARCH is rejected at the 57 level of
significance, a first indication that there is something wrong with (11). Instead of
re-estimatirfg the model by assuming ARCH in the errors we carry out our parameter
constancy tests. The p-values of LML' LMZ' LM3 and the specification tests for A‘y‘
are in Table 2. Parameter constancy is strongly rejected. The sequence of

specification tests suggests a third-order polynomial as already H03 is rejected at

the 5 % level of significance. A specification of (1) with x, = (1, A‘yt i A4yt_2,
A4yt-4}l and (2) with k = 3, estimated by nonlinear least squares is
AayL =0.019 + 0.65A$y‘_l + 0.2'7}.‘.4:,r‘_z = 0.22A4yt-4
(0.0045) (0.0091) (0.099) {0.055)
+ (-0.019 + 0.19A‘yt_l - 0.54A4y‘_2)F(zt) +u (12)
(0.0045) (0.13) (0.13)

s = 0.0241, s’/s] = 0.85, LB(4) = 2.9, ML(2) = 0.67 (0.71), sk = -0.067, ek =

-0.0086, JB = 0.074 (0.96)

with
F(t) = (1 + expi-240(t"° - 8.5t"2 + 10.28t" - 3.2
(690) {3.3) (4.6) (1.8)

where t' = t/100, s is the residual standard deviation.

The null of no ARCH in the errors cannot be rejected. The large standard deviation
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of the estimate of ¥ in F does not indicate insignificance. It is due to the fact
that there is a wide range of values of 7y yielding almost the same l-:; see e.g. Bates
and Watts (1988, p. 87) or Terdsvirta (1993) for discussion. Restriction T = "Ry
is supported by the data. The transition function is graphed in Figure 3. It shows
two sharp structural breaks, the first one in 1975 where the function rapidly grows
from zero to unity and the second one, signifying the return to the first regime, in
1984. The first regime (F = 0) Is characterized with a positive intercept (a positive
trend in levels) and a complex pair of roots in the characteristic polynomial with
modulus 0.79 and period 18 quarters. The second regime (F = 1) has a zero intercept
(no trend) and the corresponding complex pair of roots has modulus 0.86 and period 10
quarters. That means much shorter cycles than those in the first regime. All of this

can be compared with the visual information in Figure 2.

Note that (12) does not give any indication about changing seasonality. This is due
to the fact that by modelling the series using seasonal differences one can at least
in some situations adequately describe changing seasonality with constant parameters.
If the series is modelled using first differences, AIC selects an AR(4) model with
seasonal dummies. The test results are found in Table 2 and show an overwhelming
rejection of the null hypothesis of parameter constancy. The specification search
again yields k = 3. Note, however, that if the choice is strictly between k = 1 and k
= 2 then the former alternative is not rejected at the 5% level of significance. This

suggests that F may be monotonic.

The estimated STR model is

Ayt =0.14 - 0.20 dn - 0.088 dzt. - 0.19 d:n + (0.074 + 0.22 Ayt_z
(0.0059) (0.0088) (0.0095) (0.0069) 0.028) (0.10)
15



+0.22 8y_ -0.14 d -0.25d, +002] d_JF(t) + u, (13)
(0.10)  10.043)  (0.052) (0.025)

where dn, d. s d:!t are the seasonai dummy variables, s = 0.0216, sz/si = 0.69, LB(4)

2t
= 2.4, ML(2) = 4.4 (0.11), sk = 0.067, ek = 0.19, JB = 0.23 (0.89)

and

Fl) = (1 + expl-147¢"7 - 1.4t"% +o0.85t° - 0.1

(54) (0.053) (0.053) (0.015)

The coefficient estimates in (13) indicate that the seasonality becomes more
pronounced as F grows from zero 1o unity. In Figure 2 that is seen to happen
zradually over time. The graph of l; in Figure 4 agrees with this impression. The
change is monotonic, slows temporarily down in early 1970s and is over by 1980. The
first differences and seasonal dummies representation appears far too rigid a model
for Dutch industrial production. Additional exampies of applying the tests and
estimating the alternative after rejecting parameter constancy can be found in

Rahiala and Terasvirta (1993).
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7. CONCLUSIONS

Although the example amply demonstrates the potential of the present approach it
has to be stressed that the nonlinear least squares estimation of the alternative may
often cause problems. Local minima are likely and good starting-values are therefore
an important prerequisite to successful parameter estimation. Sometimes an adequate
model may not be found at all but at any rate the tests will have told the
investigator that the original linear model is misspecified. In our opinion, the
tests against smooth structural change based on the STR model are a useful addition
to the econometrician’s toolkit. They represent a reinterpretation of the test Farley
et al. (1975) suggested. Such a reinterpretation is useful in the sense that
successful estimation of the alternative when the null hypothesis is rejected does
provide information about where in the sample and how the assumption of constanc;y
breaks down. This information may often be valuable in respecifying constant

parameter models that did not pass these tests.
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APPENDIX. Proof of Theorem 1

Proof. We prove Theorem 1 for k = 3 and apply Theorem 3 in Lai and Wei (1981).

Therefore, we have to show that there exists a nonrandom positive definite symmetric

T

matrix B_ such that B_l([h )% 25 1 and max
T T vt 1=t

1IB'hn 25 0 (2= means
¢ sy e !

t=1

convergence in probability). As ¥, 1(0),

T 1
it Etlﬂ(vt -u = J' ) aB(r) (A.1)
t=1 o

where B(r) is a (p + q) - dimensional Brownian motion and » denotes weak convergence

of the probability measures; see e.g. Sims et al.(1990).

From (A.l) it follows

T
e ):t"”(vt =y By (A.2)
t=1
T
~(l+}+1) i+} _ - » P
T Zt (vt u](vt p) — CIJ (A.3)
t=1
Furthermore,
T
T-uom)[tlﬂ Py (i+ j+ n* (A.4)
t=1
(Sims et al. , 1990). From (A.2) and (A.4) it follows that
T
i) [tlﬂvt Lo+ g+ (A.5)
t=1
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Combining (A.3), (A.4), and (A.5) yields

T

=(l+}+1) 1+) ] (s . -1 y
T Zt vtvt——>C“ (i+ j+1" pp —Mu.

t=1
Let
FMoo Mm Moz Mﬂ:i-
M M M 1172 173 /4
i = 1 o1z 13 1 = 1/3 1/4 1/5
M22 M23 ' N /5 176y’
M 177
33

U (Ue J.t’]~

(U e p) M

T
& o 1/2  3/2 _5/2 /2 B e B ~ -l el
T, = diagT™ T 7% T7) and T = diag¥, (f, o 1)) Then T ():htht)'l'

t=1
T

—— D, where D is positive definite because T‘"([hth;];f"l is positive definite for

t=1
T
all T. Let Br = (fToD'? (positive definite). Then B_I_l():hth;_)u2 By Ia
t=1
-1 2 P e Eg -1 -1 -1 ~1/2,7,
Furthermore, IB_h II® = h'T D T h = T0(1) = O(T™"), because T h = T Y45,
Tt t t P P t t
e - =2 2 T -1 P
(st ) zt) )' where 5, = (1, vT, (t/T)°, (&/T)°)'. Thus maxlnﬂllBT htll — 0. o
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Table 2. p-values of LM,, LM

1 o I.l\.(3 and model specification tests based on the AR(4)

models for the four-quarter differences and the AR(4) model with seasonal dummies for

the first differences, respectively, of the logarithmed index of Dutch

industrial
production.
Department Test Specification
Variable Hypothesis
LMl L,M2 LM3 Ho:: Hoz
A4y‘ 0.031 0.0076 0.0010 0.018 0.039
-4 -4 -6
Ay! Sx10 2x10 8x10 0.0016 0.058
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Figure L. The graph of two transition functions for k = | in the smooth transition

regression model (1), transition speed ¥ = 0.1 (===), 3 = 1.0 (—): location

parameter a = =50, sample size T = 100,
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Figure 2. The logarithmic values of the quarteriy seasonaily unadjusted index of

Dutch industrial production, 1960(i) to 1986(iv).
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Figure 3. The graph of the transition function in the estimated STR model (12) for
the quarterly four-quarter differences of the logarithmed volume index of Dutch

industrial production, 1962(i) to 1986(iv)
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Figure 4. The graph of the transition function in the estimated STR model (13] for
the first differences of the logarithmed volume index of Dutch industrial production,

1961(ii) to 1986(iv)
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SAMMANFATTNING

Antagandet om att parametrarna i en linedr modell ir konstanta
dr vdsentligt i all statistisk inferens och tillimpas ocks& nir
man gor prognoser med hjilp av sidana modeller. Dirfér Hr det
viktigt att antagandet ocks& kan testas. Mdnga olika tester f&r
detta &ndamdl existerar i litteraturen, och ett stort antal av
dem &r tester mot den situationen, att Parametrarna i modellen
féréndras precis en gdng. Detta kallas ett strukturbrott. Det
finns ocksd tester i vilka mothypotesen till konstanta parametrar
dr, att parametrarna ir stokastiska. Testerna i denna uppsats
skiljer sig frdn de flesta i att mothypotesten tilliter en
Parametervektor, som kan f8rindras kontinuerligt och
deterministiskt i tiden. Den alternativa modellen &r fullt
parametriserad, vilket inte ir helt vanligt heller. F¥rdelen med
ett parametriserat alternativ till konstanta parametrar ir, att
om man fdrkastar nollhypotesen, kan man fortsitta med att skatta
alternativet. Den vigen utvinner man information om var i urvalet
antagandet om konstanta parametrar bryter samman och om huruvida
detta sker mycket snabbt (strukturbrott) eller mera lingsamt i
tiden. sddan information kan hjdlpa modellbyggaren i att
fdérbdttra specifikationen av sin modell. T uppsatsen hirleder
man teststorheterna f&r tre olika alternativa parametriseringar
och bevisar, att de under ndgra ganska sedvanliga antaganden har
en vdlkind asymptotisk nollférdelning, nimligen en x*-férdelning.
I praktiken b&r man dock undvika x’-testet och helst anvinda det
motsvarande F-testet, eftersom det senare testet i smd urval
brukar ha bittre statistiska egenskaper &n det f8rra.
Simuleringarna i uppsatsen visar, att F-testet faktiskt fungerar
bra och oftast har bittre styrka 8n vissa andra tester, som
férekommit i litteraturen och blivit tillimpade i praktiken.
Uppsatsen inneh&ller ocks& ett praktiskt exempel, dir testerna
tillémpas p3 tva autoregressiva modeller f&r en kvartalsserie
‘med-ca. 100 observationer av den holl&ndska industriproduktionen.
Nollhypotesen om konstanta parametrar blir f&rkastad, den
alternativa meodellen skattas och resultaten diskuteras.
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