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ABSTRACT

Proportions estimated from surveys are sometimes used as values of an independent variable in time
series regression modeis. This paper examines the effect of the sample errors in such an independent
variable when estimating the slope parameter in a simple linear regression model. [t is found that the bias
for OLS can be large, especially when the independent variable is on a low level. Some consistent
moment estimators have been evaluated in a simulation study. This has been done for three independent
variables on different mean levels. For the two variables on the lowest levels these estumators are found
to be better or much better than OLS while this mainly was not the case for the third variable. The resuits

indicate that other estimators than OLS should be considered when dealing with independent variables
based on survey data.

1. INTRODUCTION

Econometric time series models for macro-economic variables sometimes include
independent variables that are based on sampie estimates. One example of this is when
household survey data are used as explanatory variables in consumption or investment
functions. Another example is in connection with what is known as "tests of rationality".
Then it is customary to start with a test of so called unbiasedness by estimating the
equation y, = o + 3 y*, + g, where v¢ is inflation and y”, expectations on inflation
measured through surveys, and testing for the hypothesis a=0, B=1. In both examples
sampling error will be source of error in the independent variable (see Jonsson & Agren,
1991, and Jeong & Maddala, 1991).

The predictive ability of household survey data as concerns economic development and
buying plans, has been evaluated in several studies (for a brief survey see Agren, 1989).
The survey variable is sometimes the only explanatory variable, sometimes it appears
together with ordinary economic variables. In all the studies the problem of sampling
errors is neglected. The problem was pointed out in Jonsson and Agren (1991).
Discussing car expenditures they argue that the effect of sampling errors on the results is
not always negligible, at least not for values close to zero of the explanatory variables.
They use proportional variables such as the proportion of households that believe their
financial situation will improve during the next year (attitude) or the proportion of
households that are 100% sure of buying a new car within six months (plan). They found
these two variables to perform relatively well (using OLS) in comparison with other
indices based on the Swedish household surveys. However, the explanatory power of the
plan variable was found to be sensitive to the sample size of the surveys. This was less
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pronounced for the attitude variable, probably due to the fact that the plan variable is on
a very low level, while the attitude variable is not. The selection of index used for
explaining car expenditures will therefore depend on the sample size in the household
survey.

When estimating population proportions the sampling variances will not be constant
because the proportions vary over time. Another reason for varying error variances is
unequal sample sizes. In the Swedish household survey, carried out by Statistics Sweden,
the sample size has undergone several changes since the start of the survey in 1973. It is
well known that errors in the independent variables will cause inconsistent estimates if
OLS is used. Fuller (1987) gives a comprehensive survey of methods for how to correct
for this kind of asymptotic bias. The survey includes general methods for handling a
situation with unequal error variances for fixed regressors, when the error variances are
known. Such methods are of interest here since standard errors for the measurements on
the independent variable are sometimes published, sometimes they can easily be
estimated under the assumption of simple random sampiing.

The aim of this study is to investigate the effect of sampling errors on the OLS-estimator
of the slope parameter in a regression model when the population proportion at time
point t, x, of an event is fixed and the observed number of events is binomially
distributed. We also use simulation to evaluate some consistent estimators. This will be

done for three levels of x. We oniy study the case of one explanatory variable.

To solve the problem with errors in variables, Jeong and Maddala use a FIML-estimator
based on multiple sources of expectations to correct for the bias. If such information
were available this method could of course also be used on household survey data. This
is seldom the case but multiple sources of information can be obtained by splitting every
survey into two parts and by constructing one index for each part. This will be an easy
way to handle the errors in variables problem. In a final section, a two indicator model
obtained by splitting the surveys into two parts will be briefly analyzed. This will be
done under the binomial assumption, but the method has a much broader applicability.



2.THE ERRORS IN VARIABLES MODEL WHEN THE MEASUREMENTS ON THE
EXPLANATORY VARIABLE ARE SAMPLE PROPORTIONS

2.1 The model

The classical errors in variables model with fixed x; can be presented in the following

way:

Structural equation: y, = o + Bx, + q, where q; is IN(0,0%). t=1,.T. (1)
Measurement equations: Y, =y, +w,

Xt = Xt + Ut,

where w, is IN(0,0%,) and u, is IN(0,02) and w,, q, and u, are assumed to be

independent. IN is an abbreviation for "independently and normaily distributed”. T
denotes the number of observations on a sequence {Y,X,}.

It is well known that OLS regression of Y, on X, will provide an inconsistent estimate b,

of B (cf. Fuller, 1987). It is the measurement error in x, that is critical. The probability
limit of by is:

plim b,= KB, (2)
where K is the so called reliability ratio and is equal to:
K=02,/(c2,+02), where 02x=%.2(x[~ux)2 and p.xz%le,

and where
by=Sxy/ SXX=E(Xt'X)(Yt'?)/2(Xt“X)Z :

The population coefficient of determination between the observed variables, RZyy, is

also affected by the size of the measurement error variances and it is easily shown that
this coefficient is K times the coefficient of determination for the regression of Y, on x,,

RZy,. When the error variance in X, is known, a consistent estimator of B can be

obtained by the method of moments (See Johnston, 1963, pp. 159-160). The estimator is



b =Sxy/(Sxx - (T-1)o?). 3)

In the applications concerning household surveys, mentioned in the introduction, the x
values are often population proportions. If the measurement X, is based on a simple

random sample of N, elements and if the number of elements in the population can be
assumed to be large, compared to the sample size, then N,X, is approximately binomially
distributed and the error variance in X;, 0%, is equal to xy(1-x{)/N,. The measurement

error, if any, in the dependent variable is not of interest and will therefore just be added
to the error in the equation (g,=q,+w,). The estimator corresponding to (3) now becomes

(cf. Appendix A):
by = Sxy/(Sxx - (1-1/T)Z02,), where 0% ;=x,(1-x,)/N,. 4)

Replacing x, by X, and N, by N;-1 provides an unbiased estimator of the error variance in
x,. This estimator of Zo?, will have a small standard error if it is based on several
surveys, where in each the sample size (N,) is large (cf. Appendix B).

2.2 The size of the asymptotic bias

We have seen that the size of the asymptotic bias, when using OLS to estimate the slope
parameter, is related to the reliability ratio K. Transforming K to match the case of
unequal error variances gives:

K = 02,/[0%,+Zx(1-x,)/NT]=No?,/[NoZ +Zx,/T - Zx2,/T]= )]
=NOZ,/[(N-1)02+ug(1-py)]

Here we assume N;X, to be binomially distributed and N; = N for all t. As can be noted,
K is decreasing, for given variance in x;, when the mean level of x, is getting closer to
0.5. Often it is more realistic to keep the coefficient of variation (CV=0,/u,) constant.
Then
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(N-I)(CV)> + i

K=

The size of K depends on the number of observations (N), the coefficient of variation
(CV) and the mean level of x, (). Given the two first factors and assuming that p,<.5 it

Is obvious that K is very sensitive to the level of x, and that it is decreasing, meaning
increasing bias, when p, decreases. The effect accelerates when Uy is getting close to

ZErOo.

Assume that the x; values are equally spaced between the minimum and the maximum
value of x, . The squared coefficient of variation can then be shown to be

T+1 min(x)
(CV)Z = 3(T-1) (1- I }2- )

Inserting (7) into (6) and replacing N-1 by N in the denominator of (6) gives

Ka N/3
N Ly 1 '
g * u min(x), ,
ik
X

where N*=N(T+1)/(T-1). (8)

In order to illustrate the size of the asymptotic bias according to (8), K has been plotted
against py for T=50 and N in Figure 1A, where the varying minimum of x is assumed to
be half the size of the mean. The figure clearly points out the sensitivity of the bias to
the level of the variable. Even when the sample size is as large as 10000 the bias may not
be negligible when p, is smaller than, say 2%. It can also be seen that the sampling error
causes considerably biased estimates for much higher proportions if the sample size is
not large enough. The right-hand figure shows how K depends on the variability in x,
measured by the ratio between min(x,) and P The less this variability is the less is K.

Even with a sample size of 2400, serious bias occurs for almost all proportions if the
variation in x, is small.

A situation often arising in practice is that a choice has to be made between x-variables
on different levels. If the criterion for choosing variable is based on R2,, the choice will



FIGURE 1. K as a function of u, for different N (A) and different min(x)/u, (B). T=50.
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depend on the sample size. This is illustrated in Figure 2. Three x-variables on different
mean levels (1%, 5% and 15%) are assumed to have R2y,= .95, .80 and .65. The
variable with a mean of 1% would be the best one according to R if we know the true x.
In Figure 2, RZyx = KR%y, has then been plotted against the sample size (N) using (8)
for the calculation of K with min(x)/u,=0.5. This last assumption means that the variable
with the lowest mean is rectangularly distributed between .5% and 1.5% and the variable
with the highest mean between 10% and 20%. We note that the 1% level variable is to be
preferred if N is greater than, say 4800. When N is less than 600 the variable with the
highest mean is chosen, while the 5% level variable is "best" when the sample size is
between 600 and 4800.

2.3 Estimation of the slope parameter

In (4) a moment estimator b, of the slope parameter was given that corrected for the

inconsistency caused by the error in the independent variable. One problem with this
estimator is that in a sequence of observations one can get a small or even a negative
denominator, because 02, might be underestimated due to correlation between X, and uy.

Fuller (1987, pp. 193) proposes the following estimator in the case of unequal but known
error variances:

Sxy Sxy
by = = if A'=A-1/T>1, (9a)
Syw - (1-8/T)Za?2 ) =
xx - (1A%, Sxx +T20%,-Z02,
and
Sxy ”
tigrs if A"=A-1/T<l, (9b)

o
Sxx +72a%,, - (A-1/M)Za2y,
where A = Syx(1-R2xy)/Z02,,.
In (9), & is a positive constant. If 8=1, (9a) is identical to estimator b, in (4). Fuller

makes some comments on the choice of & in the case of normally distributed x¢ and

errors with constant variance (Fuller 1987, pp. 249). For the case where x is fixed but the



error variance varies no comments are made upon the choice of 6. In this study d=1 will
be used. In (9), A is the ratio between the residual sum of squares when taking the
reverse regression of X, on Y, and the sum of error variances in X;. This ratio is expected
to be greater than or equal to one since the error variance in X, is a part of this residual
sum of squares. However, in a sequence of observations, it happens that A<1. This is a

motivation for the modification of (9a) made in (9b), also exciuding the possibility of a
negative denominator. Inserting the expression for A into (9b) gives

b = Sxy/(SxxRExy+2202,/T)=(bxy + 2202,/TSxy) "}, (10)

where the denominator is non-negative (if SyxR?xy or £02,>0). Note that the inverse
of the OLS-estimator, when taking the regression of X on Y (bxy), is approximately the
same as (10) if Z02,/T is small compared to SyxR?yy. This inverse is often proposed as
an upper limit for B when x is measured with error (cf. Maddala, 1988, pp 381-382).

If the error equations are inserted into the structural model (1) we get the model

Y, =+ BX - Pu + g, where g, = wy + qy. (11)

The error term v,=-fu+€, will be heteroscedastic since 02, varies with x,.. Another
source of variation in the error variance can be unequal sample sizes (N,). Fuller (1987,

pp. 192) gives as an alternative estimator to (9) a generalized least squares estimator, for
which the observations in (9) are weighted by #=1/s2_,:

Saxy
by = 3 , Me=1  if ATl (12)
Spxx +TEA0%; N 1 TA0%,

K'n=kn-1,n'T if A,-1/T<1,
and

Saxx - (Saxy)*Sayy s " -
where A= Th02,, » Saxy=ZA(X-X)(Y-Y) , Saxx=Za(X-X)?
ul

Spyy=22(Y(-Y)? and

where ft=1/s2; with s2,,=s2.+(b3)202,, s2=Z(Y\-a-b3X)2/(T-2) - (b3)2Z0?,/T
and a=ZthI'-b3ZthI‘.



s?, is obtained by applying (9) in a first step. If A is less than one the estimator s2, of
vt PPlying P €

0%, is put to zero. According to Fuller (1987, pp 195) the estimator b, of B is expected

to be superior to (9) in almost all practical situations.

Fuller also gives asymptotic estimators of the variances for (9) and of the weighted
estimator (12) in the case of normal errors and for (9) in the case when no assumption of

normal errors is made. In this study the measurements on x are assumed to be obtained
from a binomial distribution but as the sampie sizes (Ny) in the applications are iarge the

errors can be assumed to be approximately normaily distributed unless X is small. The

formulas are presented in Appendix C.

2.4 Classification of a sequence of observations according to a chi-square test and to A

A trivial assumption of regression analyses is that 02,>0. However, the error in X, can
more or less conceal the true variation in x,, but the hypothesis 62,>0 can be tested

against 02,=0. We can simply apply an ordinary chi-square test of equal population

proportions with T-1 degrees of freedom. One reasonable strategy will then be to
continue the analysis of only those sequences that produce significant chi-square tests.
The chi-square statistic is the usual one: EX(0,-E))*/E,, where O, is the observed and E,
the expected frequency. After some reformulations the statistic becomes:

2 th(Xt‘i')z

— where X* = ZN,X,/2N,. (13)
X*(1-X")

For equal N, the chi-square statistic is
x2=NS /X (1-X),
which can also be written as

N(T-1)(CV)?X/(1-X),

where CV is the coefficient of variation of X;. It is obvious that the mean level of X

will (for a given coefficient of variation) affect the "power" of the test, which will
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decrease with decreasing mean. An estimator k of K is given in Appendix A. If 02, in
this estimator is replaced by ZX(1-X,)/(N-1) we obtain (14):

o Sxx - (1 IDEXAXYN-D) - (N-1/DSx -(r-DX(1-X)

Sxx - (N-DSxx ' (L)
Inserting x2=NS,,/X(1-X) into (14) yields:
N-1/T N 1 1
= - 7 4 e,
K="N1 ~Nixzar *! e (15)

From (15) it is clear that the proposed strategy to only accept a sequence of cbservations
if the chi-square is significant will guarantee positive k:s so the denominator in (4) will
stay positive.

The modification based on A" made in (9b) also guarantees a positive denominator in the
estimator of B. The relation between A" and the Z-statistic is:

(N-1)Sxx(1-R?vx) 1 N-1 %2 X(1-X) 1
N

2
- == Riyo -5 6
TX(1 -X) EX(1-X )X (1-X) T a1 IR003x 1%y T (169)

If X, is small ZX{(1-X;) will approximately be equal to .Y‘..Xt(l-}—(). A" is then

approximately equal to:

. X2 1
A e (R0 - 7 - (16b)

Hence A" is a function of the chi-square statistic and R2yx. When dealing with
proportional variables on a low level and when R%yy is close to zero we note that A" is
approximately equal to the chi-square statistic divided by its degrees of freedom and
increasing with increasing values of the chi-square statistic. The critical value for the A"
correction in (9) is A*=1 . If the inequality A* > 1 is inserted into (16b) this expression
becomes

x2/ (df+2) > 1/(1-R%yx) 17N
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In order to get an insignificant chi-square test statistic for A*21, R%yx must be small.
From (16) it is seen that it is possible to get A"<1 even if the chi-square statistic is

significant. This holds for low values of the proportion variable if the chi-square statistic
is near the critical value of the test and R2y is not too low.

Since the values on the chi-square statistic and A" can be obtained from a sequence of
observations, these sequences can be classified according to the significance of %2 and the
values of A":

Class 1. Not significant,

Class 2. Significant, A"<1,
and

Class3. Significant, A*21

It is then possible to evaluate how the estimators of B work in these classes separately.
This will be done next.

3. THE SIMULATION STUDY

3.1 Design
The model to be used in the simulation study to generate Y, is
Y =a+pBx +¢g,t=1,,T.

X; is a fixed proportion, which is estimated on the basis of N, independent observations.
Thus, instead of x, we observe X,=x.+u, where N,X, is binomially distributed and the
errors u; are independent with mean zero and variance x,(1-x)/N,. The variance is
estimated by replacing x, by X, and N; by Ni-1. g, is assumed to be IN(0,02) and
independent of u,.

The simulations will be performed for three x-variables, denoted x1, x2 and x3. The
fixed values on these variables have been chosen to approximately correspond to
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variables in the Swedish household survey and are on different levels. The first one, x1,
represents the proportion of households that expresses a likelihood of 100% that they will
buy a new car within six months. The third variable, x3, corresponds to the proportion of
households who believe that their financial situation is going to improve within the next
year. For these two variables the observed sample proportions, during the period 1976:3

to 1989:2, have been smoothed, and are denoted )—(v A sequence of T=48 x, values have
then been equally distributed between the minimum and maximum of )-{t. The second

variable, x2, has been given the same coefficient of variation as x3 but x2 is on a lower
level. The rectangular distribution enables us to get the same distribution for Y, in the
three cases. The mean and the variance of the x-variables are given in Table 1. We note
that the variables are on different levels, x1 being on an extremely low level. We also
note that this variable has a larger coefficient of variation than the other two. For each x-
variable the simulations of Y, are performed for R%y,=1-02,/02 set to .65, .80 and .95.
The reason for using different R2 is that the value on A" depends on the size of R2 (cf.

(16)). Table 2 shows the parameter values that have to be assumed in order to assure R2
values of desired magnitude. The simulations of X, have been performed using sample

sizes (N) of 800, 1200, 2400, 3600 and 4300 households at each of the T=48 quarters.

TABLE 1. Description of the three x-variables.
CV=Coefficient of variation.

100*min(x) | 100*max(x)| 100wy | 10000s0%, | (CVY2
x1 39 1.21 800 05842 .0913
x2 3.42 7.38 5.400 1.3617 0467
X3 10.80 23.30|  17.050 13.575 0467

TABLE 2. Description of the parameters in the three models to be used in the simulation.

(RzYx =1- UZE/ 02'{)

R2y, =0.65 R2y,=0.80 R2y,=0.95

EY) | Vara()| « B a B a B
x1 | 10.00 | 1.000 | 7.331] 333.57| 7.040| 370.06 | 6.774 | 403.26
x2 | 10.00 | 1.000 | 6.269| 69.09| 5.861| 76.65| 5.490| 83.53
x3 | 10.00 | 1.000 | 6.269| 21.88| 5.861| 24.28| 5.490| 26.45
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The effect of unequal sample sizes is also examined by assuming a sample size of 3600 at
the "first and third quarters" each year and a sample size of 1200 "the second and fourth

quarters”. This approximately corresponds to the actual design in the Swedish household
survey. Some investigations have also been done for x1 with N;=7200 and N,=10800.

The number of replications is set to 2000.

3.2 The classification of the sequences of observations according to the chi-square and
the A-criteria

In Table 3 the outcome of the simulation study on the three classes mentioned in the
previous paragraph are presented. Insignificant chi-squares at the 5%-level can only be
found for x1 and occurs for the two smallest sample sizes. This is in line with the earlier
conclusion that the "power" of the test, for given coefficient of variation, depends on the
level of the x variable. When the sample size is 800 nearly 20% of the sequences are
recommended to be dropped (cf. 2.4).

The risk of getting A" <1 is, as expected, increasing with increasing R2 and is largest for
the variable with the smaliest mean (x1). For the two smallest sample sizes and for the
design with mixed sample sizes we note high frequencies for x1 in the class A*<l,
irrespective of R2, Low frequencies in that class are mainly to be found for x1 when the
sample size is large (2400 elements or larger) and RZ is set to .65 or .80. When R2 is high
(.95). we note for both x1 and x2 and almost all sampie sizes relatively high frequencies
of A"<1. Some 10 % of the sequences fall into Class 2 when the variable x2 is used with
a sample size of 800 and when R is set to .80. For all other combinations of x2 and R2
= .80 the risk is small or very small to get a A* <1. For the variable x3 we get no
sequences with A°<1 when R2=0.65 or .80. When R2 =.95 we note a high frequency only
for the sample size 800. The risk of getting a low A* obviously depends on R%y, and on

the level of the variable, as pointed out in Section 2. R2y, is of course unknown, but
sometimes it is possible to have some opinion on the size of the explanatory power. And
if this is not very high we note from the table that the risk of getting a A*<1 is small for
the variables x2 and x3 and, if the sample sizes are large, also for x1.
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TABLE 3. Percentage significant chi-square test statistic at the 5% level and percentage
of the  significant sequences for which A" <1 for each combination of variable,
sample size and R2. The results are based on 2000 replications for each combination.

Sample-size | % Sign chi-squares | R2, =0.65 RL“:{),S{) R2,=0.95

xl 300 80.95 16.0 29.2 46.4
1200 95.55 139 28.0 49.1

2400 100 3.1 14.6 48.3

3600 100 i3 3.4 30.6

4800 100 sl 1.3 21.9

7200 100 .0 .1 9.7

10800 100 .0 0 5.0
1200/3600 100 7.6 20.8 46.5

x2 800 100 1.4 9.6 45.6
1200 100 .0 2.2 35.0

2400 100 .0 .1 211

3600 100 .0 .0 9.2

4800 100 .0 .0 2.4
1200/3600 100 .0 5 26.4

x3 800 100 .0 .0 11.5
1200 100 .0 .0 3.9

2400 100 .0 .0 2

3600 100 .0 .0 .0

4800 100 .0 .0 .0
1200/3600 100 .0 .0 1.2

3.3 Evaluation of the estimators of B

The estimators to be evaluated are the OLS-estimator (b;), the moment estimator (b, cf.
(4)), the moment estimator modified according to Fuller (b3, cf. (9)) and the
corresponding weighted estimator (b, cf. (12)). If A* 2 1, so is by equal to bs. For the
sequences of observations in each cell in Table 3 the mean of the relative bias and the
root mean square error (RMSE) have been calculated. The results are presented for x1,
x2 and x3 in Table D1A, D1B and D1C in Appendix D. No results are given in the

appendix in cases where the number of sequences in a cell is less than 50. The resuits for
nonsignificant chi-squares are given in Table D1D.



Starting with the results for A* 21 we note for x1 that OLS, as expected, produces a large
negative bias ranging from 23% to 68%, depending on the sample sizes (N,) used. The

moment estimators bp=bs and b, are always superior to the OLS-estimator, both in bias
and in RMSE. Yet, they have non-negligable bias for the smallest sampie-sizes,
especially when RZy, is high (.95). This is related to the risk of getting a sequence in
Class 2. The weighted moment estimator (b,) is often to be preferred to the unweighted
one (bs). However, the gain is substantial only for the case when mixed sample sizes are
used and when R2y, is high, for the cases based on relatively large samples. Even for

the variable x2 (Table D1B) the OLS estimator cannot compete with the other estimators.
The biases for the OLS-estimator are much larger and RMSE is always larger. RMSE for
the weighted estimator is, with one exception, smaller than those for the unweighted one.
However, the differences are negligible, except for the cases with mixed sample sizes.
The resuits for the third variable, x3, also show a larger bias for the OLS-estimator but

the bias is less than or close to 5%, except for the two smallest sample sizes. RMSE is in
favour of the other estimators only when the sample size is small or when RZy, is high.

The weighted estimator (b4) gives aimost identical results as the unweighted one (b3).

When A’<1 the moment estimator b, and the modified moment estimator b3 are not
identical. The OLS-estimator underestimates B but not to the same extent as it does for
the cases when A'21. The other estimators in general overestimate f, as expected, and

overestimation is often large for x1 and can be large for x2 when small sample sizes are
used. For all variables the moment estimator b, is always worse than the modified

moment estimator (bz) and the weighted modified moment estimator (b,), which means
that the modification made in A" improves the estimator. In all the cases where the
estimated risk of getting A"<1 is greater than 15% (M=300) both by and by have smaller
bias and RMSE than the OLS estimator, while when there is a relatively small risk of
such a A*, the OLS-estimator is the best. But, as mentioned before, that risk is unknown.

Looking at the results for Class 1, the cases of non-significant chi-square statistics, it can
be noted from Table D1D that all evaluated estimators are generally poor. The decision

to drop sequences where there is no evidence of variance in the true x, seems to be a wise
one.

Finally, a short comment on the effect of increasing T will be made. A larger T will
result in more sequences in Class 3. Furthermore the variance of the estimators will
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decrease implying that the importance of the bias part of RMSE will increase. The gain
in RMSE is therefore expected to be relatively larger for the consistent estimators than
for OLS.

3.4 Evaluation of the estimators of the standard deviations

In Table D2 of Appendix D the standard deviations (s,), obtained from the M
replications  of the unweighted modified moment estimator (bs) and the standard
deviations of the corresponding weighted estimator (b,) are presented. Estimates, &, of
the true standard deviations of by and by have been obtained for each sequence of
observations using the variance estimators in Appendix C. The ratio between the mean
of the estimates &, for b; and b,y and the standard deviations (s,) are also given in the
table. For the variance estimators the results presented are based on the assumption of
normal errors. The other estimator that did not require any distributional assumptions
concerning the errors (cf. Appendix C) yields results that in all cases are considerably
worse for x2 and x3 and in most cases for x1. The only occasions where this variance
estimator is better than the one based on normal errors are for the variable x1 when the
sample sizes are small (800,1200). However, then the estimator is only marginally better.
This variance estimator will therefore not be considered in the following sections.

Starting as before with results for A" 21, we note from Table D2 that the variance
estimators work quite well in most cases for the variables x2 and x3. However, when
R2y, is high (.95) and the sample size is smail the standard errors are overestimated by

13% to 35%. The results for the variable x1 are not satisfactory. For the two smallest
sample sizes there is an overestimation of between 33% and 86%. When Ry, is .95 the

overestimation is for all sample sizes larger than 18%. The overestimation is smail only
when R2y, is not so high and the sample size is large (3600 and 4800).

When we estimate the standard errors in Class 2 (A"<1) a question arises whether the
variance estimators should be adjusted with regard to the value of A" in the same way as
was done for by and by. Both cases were simulated. The results show that if the
adjustment is made the results are better in terms of less average overestimation.
Therefore, results only for the adjusted estimated standard errors are presented. Looking
at Table D2 we note that for x2 and x3 we get under- or overestimation which in most
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cases is less than 10%. The exceptions occur primarily when a sample size of 800 is

used. For x1 we often get huge overestimates. This is especially the case for the standard
errors of the non-weighted estimator, bs.

Using the unweighted and the weighted modified moment estimator (b3 and by) and the

obtained estimated standard errors, 95% confidence intervals have been calculated as b
£ 1.96&y,. The number of times these intervals cover, lie totally to the left of or totally to
the right of the true B has been counted. The resuits for A* 21 are presented in Table
D3D. As can be noted, the empirical levels of confidence vary from 94% to 98% for the
variables x2 and x3. The negative bias in the estimation of B of 5% to 6% for x2 800,
when R%y,= .95, is compensated for by the overestimation of the standard errors. For x1
the results in most cases show empirical confidence levels that lie between 93% and 96%
when the sample sizes are between 2400 and 4800 and thus the intervals seem to work
satisfactorily for those sample sizes. But this is often due to overestimation of the
standard errors, balancing the negative bias. When the sample sizes are small (800 and
1200) the confidence levels vary between 71% and 93%. The lowest value occurs when
the R%y, is .95 and the sample size is 800 and the highest when RZy, takes on the lowest
value and the sample size is 1200. One also notes for the variables x1 and x2 that the
frequencies of intervais that lie totally to the left of B often are higher, sometimes much
higher, than the frequencies of intervals to the right of B. This pattern is most evident
when R2=.95. In fact, for the variable x1 no interval then lies to the right of f3.

The empirical level of confidence varies between 87% to 100% in Class 2 (cf. Table
D4D). The lowest levels are to be found in cells with relatively few sequences. The
highest levels are in some cases caused by huge overestimation of standard errors,
mentioned above, leading to very wide intervals of doubtless value.

3.5 A comment on the Swedish household surveys

The x variables used in the simulation study were based on the Swedish household
survey of consumer attitudes and buying plans. Historically the sample sizes have been
large. Since 1984, a design with 1500 households in the first and third quarters and 4200
households in the second and fourth quarters have been used. The size is reduced by non-
response. In the simulations, simple random sampling has been assumed while a stratified
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sampling design is used in practice. The latter will probably lead to errors of a smaller
size than for simple random sampling, but as we are dealing with proportions the gain
with stratified sampling is probably not very large.

A R2 as high as .95 is often most unlikely in the applications mentioned in the
introduction. For the variables x2 and x3 the results for A* 21 are therefore most
applicable. Looking at sampie sizes of at least 2400 households in each survey or the
mixed sample case we have noted that the risk of A<l is very small. The moment
estimators by and by are then quite satisfactory and are to be preferred to the OLS
estimator for the variable x2. However, for x3 the OLS-estimator behaves almost equally
well. The weighted estimator (by) seems to be somewhat better than or as good as the
corresponding unweighted estimator (bsz), for both x2 and x3. The results for x1 are,
despite a larger coefficient of variation, not as good as for the two other variables. The
moment estimator could well lead to A°<1 and overestimated slopes and standard errors.
If A* =1 the results for these estimators are much better than for OLS but we should be
careful when interpreting estimates obtained with the moment estimators because of a
possible negative bias. In general, the weighted estimator b, is to be preferred to the
unweighted alternatives. The mixed sample case in general produces poorer results than
when a sample size of 2400 households is used. It is possible to show that the asymptotic
bias for the mixed sample case approximately corresponds to a bias for a sample size of
1800 households at each time point. For our purposes the design with mixed sample sizes
is not optimal.

4. A MODEL WITH TWO INDEPENDENT MEASUREMENTS ON x
Preserving the measurement equation for Y,, assume that we split each survey into two
equally sized subsamples and that:

Xy=xp+uy and Xpi=xp+uyy, where E(uy)=E(uy)=E(uyuy, )=0 (18)
and Var(uy, ) = Var( uy,) = 202,
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X, will then be the mean of these two measurements. Then, the second moments of the

observed variables are:
02x1=02y, = 02, + 202, 0%y = 0%, + 02, Oyx1=0yx2=0yx=P0?, and (19)
Ox1X2 = 0% = 0% - 0%, where 02, = 302, /T.

Hence
B = Ovx/Ox1x2 =0vx/(02x - 0%, )=0yx /(0% - 202, /T).

From (19) one gets the moment estimator (4). The term 20?2, was estimated earlier
under the assumption that N, X, is binomially distributed. Since 02y, = 02,, can be shown
to be equal to E(X;,-X3,)2/4 we also have the possibility of estimating the sum of the
error variances by Z(X;-X;,)%/4. No assumption about simple random sampling or that
X is a proportion need to be added to the assumptions in (18) for this estimator to be
appropriate. Of course, here too one can modify the moment estimator according to the
value on A" using (9). The estimators corresponding to (4) and (9) obtained using
Z(Xq-X»)?/4 as an estimator of the sum of the error variances will be denoted by, and
bz3, respectively. An altemative estimator to by is b=Syx/Sx;x2, Where Sxx2/(T-1) is
the covariance between X1 and X2. However, Sx ;x5 calculated as E(X14-X)(X5-X), can
be shown to be equal to Sxx - Z(X-Xp)%/4, a good approximation of by,.

Although the estimators b, and b,y have a much broader applicability they have been

evaluated in the simulation study under the same premises as before, but for fixed sample
size (2400) and RZy,=.80. The weighted estimator will not be considered. The
classification results according to the value of A* are given in Table 4. Calculation of
A" using £(X;-X51)%/4 as an estimator of $02,, does not produce the same result as
under the binomial assumption in Section 3. We note that the frequencies of A* <1 are
now higher compared to those obtained in Section 3. This is of course due to a higher

sampling variability in the estimator of the sum of error variances. In Table 5 relative
bias and RMSE are given for the moment estimator by, and for the modified moment

estimator by3. For the sake of comparison results are also given for the corresponding
estimators b, and bg, evaluated in Section 3, and for the OLS-estimator (b). From the
table we note that RMSE for by and b,s, as expected, is larger than for the
corresponding estimators b, and bs. However, the loss in precision is not large for the
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variables x2 and x3. The most striking result for the variable x1 is the large effect of the
modification made in the value of A". The moment estimators are to be preferred to the

OLS estimator for the variables x1 and x2. For the variable x3 the OLS estimator is
about as good as the moment estimator.

TABLE 4. Classification into Classes 2 and 3 using A" according to Sections 3 and 4,
respectively. The sample size is 2400 and RZy,=.80. The number of replications is 2000.

x1 x2 x3
Section 3 | Section4 | Section3 | Section4 | Section3 | Section 4
A<l 292 543 2 19 0 0
A1 1708 1457 1998 1981 2000 2000

TABLE 5. Mean relative biases and RMSE of the estimators by,bs, bs, byy and by M is

the number of sequences on which the calculation is based.
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