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We introduce a forecasting technique based on multivariate ideas previously
applied in remote sensing. The approach has the trivial, but nonetheless funda-
mental, purpose of splitting the information inherent in the time series into impor-
tant and unimportant information. The important information is used for forecast-
ing purposes, while the unimportant is thrown away. Although related to vector
autoregression, giving asymptotically the same estimates, there are reasons to
believe that the approach gives better precision of parameter estimates for finite
samples, as well as more precise predictions.
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1 INTRODUCTION

The view and status of business cycle analysis within the economic profession has
changed considerably over time. The interest in cycles has, as Gordon (1985)
points out, been almost cyclic. After the First World War, interest peaks in the
1930—40s and 1980s and has troughs in the 1920s and 1960s.

The predominant approach to dealing with business cycles among theoreticians
and applied econometricians over the last 20 years or so, dates back to Frisch
(1933) and Slutsky (1927), and rests on the assumption that economic fluctuations
originate essentially from sources that are exogenous to the private sector of the
economy. Business cycles are viewed as caused by an exogenously given, stationary
stochastic process of economy—wide shocks. Modern proponents of the so called
real business cycle theory include Kydland and Prescott (1982), Long and Plosser
(1983), and King and Plosser (1984).

However, some earlier students of the business cycle did indeed try to identify
internal mechanisms that can be responsible for observed variations in prices and
quantities. Work belonging to this tradition includes Goodwin (1951), Harrod
(1936), Hicks (1950), Kaldor (1940), and Samuelson (1939) just to mention a few.
Recent attempts are found in, for example, Grandmont (1985) and Puu (1988) and
differ from the earlier ones in that they include the study of the occurrence of

*  The authors acknowledge helpful comments from Peter Englund and
Anders Vredin at The Swedish Council of Economic Advisors, Stockholm,
and Lars—Erik Oller, Department of Economics, University of Helsinki.
Research assistance has been provided by Eva Rovainen, Department of
Biometry, Swedish University of Agricultural Sciences, Umea.



complex deterministic dynamics based on the mathematical theory of non—linear
dynamical systems.

The present paper has little to add to the ongoing methodological controversy
between these two schools, but belongs to a recent philosophy of forecasting the
business cycle. In the late 40s and early 50s the technical development of econo-
metrics was proceeding rapidly and there existed considerable optimism with
respect to the possibilities of building workable large scale econometric models for
forecasting purposes. This optimism depreciated considerably during the 70s, and
disappeared due to the "Lucas critique" and Sims’ critique! of the exclusion
restrictions assumed in the specification of structural equations of large—scale
models. The latter also introduced the small-scale reduced—form vector auto-
regression (VAR) models distinguished by their symmetry in treating all variables
of interest as endogenous.

The present approach has the trivial, but nonetheless fundamental, purpose of
splitting the information inherent in the time series into important and unimpor-
tant information.? The important information is used for forecasting purposes,
while the unimportant ("noise") is thrown away. Although related to VAR, the
approach stems from statistical multivariate ideas, which have been applied in
remote sensing. Collected spectral signals are "aggregated" into a combined signal
by weighting them in a mauner such that the spatial autocorrelation? in the
combined signal is maximized. In a time series setting, the analog is to maximize
the autocorrelation over time. We can continue and construct more signals, also
linear combinations of the spectral signals, obtained by maximizing the autocorre-
lation given restrictions on orthogonality with higher order combined signals. The
new signals are reminiscent of principal components (PC), but a key difference is
that, whereas in principle component analysis the weights are chosen to maximize
the variance of the combined signal, here they are chosen to maximize the auto-
correlation. In a time series setting, a linear combination of the original time series
is constructed by maximizing its autocorrelation. It should contain important

1 See Lucas (1976) and Sims (1980).

2 It is closely related to ideas in a paper by Box and Tiao (1977), where 2
canonical analysis of multiple time series is conducted. The components of
the transformed autoregressive process are ordered from least to most
predictable. Similar ideas are also found in Sims (1981) where an auto-
regressive index model is discussed.

3 Under a restriction that the length of the vector of weights equals one.




information about the original time series and be valuable for forecasting purposes.
Business cycle phenomena have been defined as "the recurrent fluctuations of
output about trend and the co-movements among other aggregate time seriest",
and it would be strange if the joint signals that constitute the maximum corre-
lation over time did not contain information about these co—movements.

The rest of the paper is structured as follows: in Section 3 we work out the statisti-
cal theory behind the MAFs, which is a special case of a more general analysis
found in Switzer and Green (1984), Switzer (1985), and Conradsen, Kjer Nielsen,
and Thyrsted (1986). In Section 4 we examine some important practical problems
such as how to detrend the original series to create stationarity. It should be clear
that the implicit assumptions about the growth process, which are made in any
detrending or other transformations, are not necessarily innocuous. These practical
problems are discussed in Section 5 in connection with a sample of quarterly data
containing GNP in Sweden and its main components. Next we estimate the auto-
correlation factors for this data set and the relevant regression equations to be
used in the forecasts. Finally, in Section 6 we briefly compare our forecasting
technique with the more widely used VAR—method; an exercise which generates
questions for future research.

2 A STYLIZED EXAMFPLE

To illustrate our ideas, we have borrowed a stylized macroeconomic model from
Stock and Watson (1988). They use the model to illustrate the inappropriateness
of inference methods based on stationarity when performing econometric analysis
with cointegrated variables. We will use the model to illustrate some genmeral
aspects of forecasting using the suggested technique.

¢ (See P)rescott (1986). The classical definition is that of Burns and Mitchell
1946):

Business cycles are a type of fluctuation found in the aggregate activity of
nations that organize their work mainly in business enterprises: a cycle
consists of expansions occuring at about the same time in many economic
activities, followed by similarly general recessions, contractions, and re-
vivals which merge into the expansion phase of the next cycle; this
sequence of changes is recurrent but not periodic; in duration business
cycles vary from more than one year to ten or twelve years; they are not
divisible into shorter cycles of similar character with amplitudes approxi-
mating their own.



In this artificial economy, disposable income consists of two parts: a permanent
and a transitory. The permanent component of disposable income is assumed to
follow a random walk, while the transitory component is an independently and
identically distributed random variable which is independent of the permanent
component. Consumers are assumed to know their permanent income, and to be
consuming precisely the permanent component of their disposable income.

Price changes are assumed to be random and unforecastable with mean zero. They
do not confuse consumers in the sense that real comsumption and disposable in-
come are determined independently of the price level or its changes. The model has
the following shape:

. i
(i) Fe=40
1 P = yP
(i) el + ug
(1)
(i) a=yP
(iv) Pt = Pt-1 + Vi

where yi’ and yi respectively denote the permanent and transiiory components of
disposable income (y;). The innovations yi, u, and v are assumed to be mutually

independent and normally distributed with mean zero and unit variance. Con-
sumption and the price level are denoted c¢ and p, respectively.

The observables are y, c¢, and pt, and the important information for forecasting
purposes is obviously ¢, and p;, while yy — ¢y = yi is white noise and worthless for

forecasting purposes.

We use the observables to create three new variables z,(t), zy(t), and z3(t) as
linear combinations of the observables:

— S
z(t) = a,y, + 3, + ayp, = (a;+a,)c, +azp, + 2.y,

i=1,23 (2)



and solve the maximization problems:

Max corr(z(t), z(t-1)) i=1,223 (3)

a ., €M.
i i

where M, = {a, | corr(z(t), zj(t)) =0, j<i}

and 2, = [a;, 3y, 2]

In appendix A we show that:

z,(t) =c,

z,(t) = p, (4)

(t) = gy, —¢) = 2y v?

Following the terminology in Switzer and Green (1984), we will call z(t), z5(t) and
z3(t) the Min/Max Autocorrelation Factors (MAF). Four preliminary statements
are crucial. Firstly, the important information is recovered in the first two MAFs
zy(t) and z5(t). In the forecasting equation

Y= ag + 012:(t-'1) + a322(t-1)

we would expect to get the asymptotic estimates oy = E[yi] =0, a=1,and a;

= 0. Secondly, we will in general need more than one MAF for forecasting pur-
poses. This fact is highlighted in the present context, since c; and p; are orthogo-
nal. Thirdly, the MAF that minimizes the autocorrelation is white noise, and
indeed worthless for forecasting purposes, since corr(zy(t), zs(t—1)) = 0. Finally,
although the technique to be introduced below requires that the time series are
stationary, the idea is general. However, when the time series are non-stationary
difficulties may arise, especially in the estimation and maximization of the corre-
lations.



3 THE MIN/MAX AUTOCORRELATION FACTORS

We now turn to the derivation of the autocorrelation factors. As was pointed out
in the introduction, the MAF—method has been used by Switzer and Green (1984),
Switzer (1985), and Switzer and Ingebritsen (1986) in a remote sensing context.
They transform the spectral signals of a satellite picture linearly to a new set of
signals by maximizing the spatial correlation between information from adjacent
pixels. These signals are used in attempts to isolate the "fundamental information"
from noise.

Starting from a stationary multidimensional stochastic process:

(8= [ (i 1)) (5)

a set of new variables is formed through linear combinations of the components of
the original process, z;(t) = 7{x(t), i = 1,...,p. The new variables (the MAFs) have

the property that they are orthogonal and that the spatial correlations decrease
with the index i. In other words, the spatial correlation is at a maximum for z(t)
= 7x(t), and z,(t) is thus a variable with important information together with

other high correlation MAFs, while the spatial correlation is at a minimum for
zp(t) = 7,%(t), and zp(t) therefore represents “noise".

The derivations of the MAFs can be found e.g. in Switzer (1985) or Conradsen et
al. (1986).

Since we are interested in forecasting time series where temporal, not spatial
correlation is maximized, we will present a slightly adjusted derivation of the
MAFs. We start by introducing a formal definition of the Min/Max Autocorre-
lation Factors. Let x(t) be a weakly stationary p—dimensional stochastic process.
For ~vin Rp, and A > 0 define:

p(7, &) = corr(7x(0), 7x(4)) ' (6)
For each fixed A, we can maximize (or minimize) p over v in subspaces of R". In

particular, given A, we can find vectors 7y,..., 7p Where for each i, 7i is chosen 80
that the correlation between 7ix(t) and 7{x(t+A) is maximized under the restric-



tion corr(7jx(t), vix(t)) = 0 for ail k < i. The linear combinations T1ix(t), i =

1,...,p are the Min/Max Autocorrelation Factors.
Now let:

Var(x(t)) = 3,

and (7)
Var(x(t+A) —x(t)) = Zp-
From

Var[vx(t+4) — vx(t)] = 'rEA'y = 27,7 — 2cov(Yx(t), Yx(t+4))

(8)
follows that:
TEAY
. _ 1 T7A
corr{rx(t), Yx(t+4)) =1 —Em. (9)
Maximizing (9) is equivalent to minimizing
'fga'f
R(1) = TE,7 (10)

However, R(7) is at its minimum if 7 is chosen equal to the eigenvector corres-
ponding to the smallest eigenvalue of T A With respect to 2, see e.g. Rao (1973, p.

74).

Let Ay € ... € Ap be the eigenvalues, and Tt Tp the corresponding normed eigen-
vectors of B, with respect to Zo, i.e. A; and 7; satisfy:

SA% = ATy, i=1,.p (11)



Now put:
z(t) = 7x(t) fi=il.p (12)

Then z(t) = [zy(t),...,zp(t)] are the MAFs.

THEOREM 1: The MAFs z(t) have the following properties:
(i) corr(z(t), zj(t)) =0 i#j
(i) corr(z(t), zi(t+/_\.)) =1 _% by

(iii) corr(z,(t), z,(t+4)) = 51'17p corr(Yx(t), Yx(t+A4))
corr(zp(t), zp(t+A)) = inf corr(y'x(t), vYx(t+4))
7

corr(zi(t), z(t+4)) = sup corr(Yx(t), Yx(t+4))
TEM.

i
where M, = {7]corr(7x(t), zj(t)) =0,j<i}
PROOF: (i) The eigenvectors 7; and 7j, i # j satisfy®:
127 = 1Ep 7 =0
Thus,
cov(yx(t), 1x(t)) = 1Ey7;, =0

(ii) and (jii) are direct consequences of (9) and (11).

5  See Rao (1973) p 74.




It is also easy to prove:

THEOREM 2: The MAFs z(t) = [z((t),...,zp(t)] are invariant with respect to
linear transformations of the original time series.

Proor: Let:
w(t) = Tx(t) (13)

where T is a nonsingular square matrix. Now:

Var(w(t)) = T 5, T (14)
and
Var(w(t+4) - w(t)) = T £, T' (15)

Since the eigenvalues of T T a T' with respect to T EO T' are identical to the cor-

responding eigenvalues of £ A with respect to ED the proof follows.

One way of deriving the MAFs is suggested below.

From Theorem 2 we know that the MAFs are invariant with respect to linear
transformations. Hence, to enable us to use standard eigenvalue procedures, it is
wise to transform the original time series in such a manner that the covariance
matrix equals the identity matrix, i.e.:

1 Find a linear transformation of the original time series x(t), say w(t) =
Tx(t), such that Var[w(t)] = Ipzp. For example w(t) can be the prindi-
pal components based on the covariance matrix £y, where each principal
component is divided by its standard deviation, the square root of the
corresponding eigenvalue, to obtain the identity matrix.

2 For a predetermined A, form the difference w(t) — w(t+A) and compute
LA = Var[w(t) - w(t+4)].
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3 Find the normed eigenvectors U = (uy,...,up) and the eigenvalues A, ¢,...,
¢ Ap, of BX.

4 Compute U'w(t) = U'Tx(t) = z(t), the MAFs of x(t).

4 THE FORECASTING EQUATIONS

The uitimate purpose of the above exercise is to use the MAFs for forecasting the
components of the original time series. Since they maximize the autocorrelation
over time of linear combinations of the original time series, they should contain
information about future values of the series. QOur forecasting instrument would
then naturally be a mapping:

k
x(t+0) = ay + T az(t) i=1,.,p (16)
i=1

where it is only worthwhile to include a potent sample of the MAFS, since zy(t),
which minimizes the correlation over time, will very likely be (white) noise.

For

z(t) = Qx(t), (17
where { is a pxp matrix with the MAF—weights as elements, we have that:

x(t+6) = Q7 '2(t+6) = Ba(t) + A (18)

where the matrix B and the vector A are chosen to minimize the square of the
prediction error.

In practice, it will often be necessary to detrend the x(t) variables to create
stationarity before the MAF's are estimated. Moreover, the MAFs at the upper end
of the scale will mainly contain noise, and would therefore be superfluous in a
forecasting model. Finally, a nonlinear relation between x(t+6) and z(t) may also
do better than the linear forecasting equation (18). However, below we will only
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consider linear forecasting equations, which are estimated by ordinary least
squares with the higher order MAFs as regressors. It is worth noting that the
MAFs in a sense represent "ideal" regressors, since they are mutually orthogonal.

From the discussion above it follows that the original time series have to be
stationary. An array of different methods like moving averages, yearly averages,
differentiation, and regression analysis tries to accomplish that.

The method applied below is regression analysis in which we decompose the origi-
nal time series x(t) into two components, one component picking up a determinis-
tic trend and seasonal variation, x(t), and one comsisting of a stationary time
series, e(t):

x(t) = u(t) + e(t). (19)
To accomplish this, we estimate u(t) as a polynomial with dummy variables pick-

ing up the seasonal variation. The particular regression model may have the fol-
lowing shape for a linear trend and seasonality of period four:

4
Mt)=6,+8t+ L BD.. (20)

i=2
When the coefficients have been estimated using OLS, we form the residuals:
et) = x(t) —i(t) (21)
which should be stationary provided that the residual variance is homoscedastic.

A small simulation experiment performed in Sjdstedt (1988) shows that the
method works reasonably well, even if the variances are time dependent, provided

that they are of the same magnitude, say o(t) = o4, as in the Stock and Watson
example introduced above. If not, there are problems.
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The MAF—weights corresponding to the stationary residuals e(t) are estimated
using the algorithm introduced above (p. 10), and we form the MAFs z(t) = Qe(t).
We then run regression equations like those indicated by equation (16):

k
e(t+6) = &, + T az(t) k<p (22)
i=i

Our forecasting equation is then given by:

x(t+6) = p(t+06) + &(t+0) (23)

5 AN APPLICATION TO SWEDISH DATA

We will report below estimations of MAFs and forecasting equations on Swedish
quarterly GNP data from the first quarter 1970 through the fourth quarter in
1087. The data include Y = GNP, I = gross investments, G = public consumption,
C = private consumption, M = imports, and X = exports.® All series are deflated
into 1980 prices.

These deflated series have been detrended and seasonally adjusted by the re-
gression technique described above. We used a first order polynomial equation over
‘time for the trend and three dummy variables to pick up the season (equation
(20)). The results are listed in Table 1:

6 See appendix B.
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Table 1 The trend and season in Swedish quarterly GNP—data.
4
x(t) = fo+ Ait + T BiDy

i=2
2
By 8, , 8, 8, R2(n) %

¥ 119 288 564 —-12 831 —12 247 —24 307 96.8
L EE 2 ] L g gy

I 28 996 323 -7 093 —2 908 -5 736 82.3
*xw hw ET wka ke

G 30 047 231 -1 130 —562 —8 939 98.0
EE 1 xR E L L 1]

C 64 134 203 —7 899 -5 614 -8 544 86.8
E T EE L b2t Lt ] Ll

M 34 487 218 —3 634 -2 772 —4 125 79.1
2 E LR L S LT LR 2]

X 28 183 367 -3 366 1864 -5 165 924
EE S LR L E 2 E *® L2

e significant at the 99.9 percent probability level.?

+#+
*®
TR

significant at the 99.0 percent probability level.
significant at the 95.0 percent probability level.

The suggested regression equation fits the data well and there is little residual
variation left to explain.

The MAF—weights (the matrix of eigenvectors U'T (p. 10)) corresponding to the
residuals of the above equations, as well as the corresponding eigenvalues, for A =
1 are listed in Table 2:

7 The residual variance is probably underestimated, since we have serial

correlation in the time series. Hence, the significance levels are very likely
overestimated.
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Table 2 MAF-weights for A = 1 derived from the residuals e(t) (Swedish
quarterly GNP—data 1970:1 — 1987:4).

N Ty 3 Ty s Ts
ey -0.03 0.25 —0.42 0.18 —0.37 -0.01
& —0.24 0.31 -0.52 -0.10 0.78 -0.27
eq 0.78 —0.74 —0.10 —0.80 0.44 —0.89
eC —0.53 =0.41 0.48 0.35 0.11 =0.15
eM —0.21 —0.13 0.00 -0.44 -0.18 0.19
eX 0.09 0.33 0.56 =0.04 0.16 —0.28
A 0.23 0.36 0.96 1.19 1.54 2.07
pf.\:l 0.88 0.82 0.52 0.40 0.23 -0.04

For example, from Table 2 we have the first MAF,
z,(t) = 7et) = —0.03e,(t) — 0.24e,(t) + ... + 0.09e,(t)

with corr(zl(t), z,(t+1)) = 0.88.

Heavy demand components such as public expenditure and private consumption
dominate the MAFs with the greatest correlation over time. A little surprising is
the fact that the influences from the export and import residuals are weaker than
one would expect in a small open economy like the Swedish one.
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Table 3 MAF-weights for A = 4 derived from the residuals e(t) (Swedish
quarterly GNP—data 1970:1 — 1987:4).

M Yy T3 T4 75 T
ey —0.01 —0.31 -0.04 —0.45 -0.11 -0.07
EBI 0.10 —0.22 -0.46 0.53 —0.41 =0.75
EG —{.99 0.61 —0.76 0.65 —0.50 0.25
eC —0.11 —0.66 0.35 0.15 0.51 -0.15
e?\i 0.05 0.19 0.09 0.01 -0.38 0.56
e,( 0.01 —0.10 -0.29 0.26 0.40 0.17
A 0.28 0.60 0.90 1.66 2.10 2.37
'0&=4 0.86 0.70 0.55 0.17 =0.05 -0.19

The same weight pattern as at the quarterly level emerges. Weights corresponding
to residuals from demand components which constitute a large share of GNP
dominate the MAFs with the strongest correlation over time. Imports and exports
remain unimportant.

In Figure 1 we graph the MAF's corresponding to the eigenvectors N (1a), Ty (1b),
% (1c), and % (1d) in Table 2. Worth noting is that, since — 1 € p < 1, a MAF,

other than the lowest ranked, can constitute the noise.



Figure 1 a
the GNP data.
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The first MAF, z,(t), with A = 1 achieved from the residuals of
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Figure 1 ¢ The fifth MAF, zs(t), with A = 1 achieved from the residuals of
the GNP data.
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Figure 1d The sixth MAF, zs(t), with A = 1 achieved from the residuals of
the GNP data.

MAFB(t)

1500

500

-500 0

—1500

1 L L 1 5 L 1

1970 1972 1974° 1976 1978 1980 1982 1984 19886 1988

-2500

year



18

Recall that the MAFs are created by applying the weights to the residuals
achieved from removing their respective trends. Thus Figures la and 1b might be
interpreted as "pictures” of the business cycle.

We now turn to the question of forecasting the time series. When forecasting ¢
steps ahead, it is natural to use MAFs with maximum correlation for A = §, but
other combinations are also possible, although not dez.* with in this paper.

For a one step ahead forecast, we start by introducing a set of forecasting equa-
tions where the MAF correlations have been maximized for A = 1, and where we
have chosen to explain the residuals one step ahead by the three MAFs which show
the greatest correlation over time z (t), z,(t), and z,(t) (Table 4a). Note that the

first two MAFs are highly significant, supporting the idea that the most important
information is in the first MAFs. Remember that the MAFs are orthogonal and
therefore only contribute new information when added to the model.

Table 4b presents the forecasting equations 4 quarters ahead, (§ = 4), where the
MAPF correlations have been maximized for A = 4.

Table 42  Forecasting the residuals by the equations
e(t+1) = o, + alzl(t) + azzz(t) + asza(t), A=1

a, a a, ay R2(e)% A=1
e, (t+1) 117.0 —0.621 0.447 -0.122 258
L ] el
el(t+1) 50.5 —0.507 0.302 -0.134 61.7
ELE EE L
eg(t+1) 0.57 0.128  —0.285 -0.054 382
L EL
ec(t+1) 78.2 —0.870  —0.398 0123  64.0
g £ 1
eM(t+1) 61.0 -1.090 0.241 0.253 62.2
EE 3 &

ex(t+1) 45.2 —0.128 0.841 0.596 48.3
e

La
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Table 4b  Forecasting the residuals by the equations
e(t+4) = o) + az(t) + a2t az,(t), & = 4.

2 =
o, .3 a, ay R'e)% A =4
eY(t+4) 165.0 0.248 -0.775 -1.113 46.8
T xEwm
e[(t+4) 126.0 0.709 —0.360 —0.342 49.0
P T e
eG(t+4) ~46.8 —0.782 —0.055 -0.018 75.4
ec(t+4) 273.0 —0.053  —0.986 0.148  62.4
%%
e, (t+4) 218.0 1.011  —0.863  —0.337  44.0
M ey LT
e,<(t.+4) 20.2 0.833 0.012 -1.026 35.2
4 ko % &

The relative squared prediction error of forecasting equation (23) can be written in
the following manner:$

2 2
1-R¥(x) = 1~ R*(e)] [1-R(w)]
The last two columns of Table 5 contain the precision in forecasting equation (23)

for the forecast generated by the trend and seasonal variation, plus the residual
equations in Tables 4a and 4b respectively.

8 See appendix C.



20

Table 5 The precision in forecasting equation (23) for the forecast generated
by the trend and seasonal variation plus the residual equations in
Tables 4a and 4b respectively.
R7(u) R%(x) R¥(x)

A=6=1 A=6§=4

X 96.8 97.6 98.2

I 82.3 93.2 91.0

G 98.0 98.8 99.5

C 86.8 95.2 95.0

M 79.1 92.1 88.3

X 92.4 96.1 95.1

A four steps ahead within sample forecast is sometimes better than a corresponding
one step ahead forecast. This can be due to remaining seasonality in the residuals.

Some interesting questions are the out of sample performance and comparisons
with other methods. We will consider two other methods. The first approach will
forecast the time series using only the deterministic trend and seasonal variation
and ignoring the residuz! information. The second approach also uses the determi-
nistic trend and seasonal variation, but suggests a vector autoregressive model
(VAR) when forecasting the residuals.

A general VAR—model can be written:

e(t) = C(L)e(t) + v(t)

where C(L) are lag polynomials and v(t) is a vector of white noise residuals.

We will consider the following special case of a VAR—model:

e(t+1) = Ce(t) + v(t)

where C is estimated by least squares.
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Hence, we have the following three models:

(1) x(t+1) = p(t+1)
(1I) x(t+1) = p(t+1) + ey aplttt)
where

::
e aptttl) = izl az,(t)
(111) x(t+1) = p{t+1) + e
where
evar(t+l) = ae (t) + ae (t) + ... + age(t)

VAR(t+1)

Note that u(t+1) (corresponding to equation (20)) is the same in all three models,
and is estimated by least squares based on the t first data points. The constant
term ap is not present in models (II) and (III) for the residual forecasting equa-
tions. A reason for this is that in Tables 4a and 4b none of the constant terms are
significantly different from zero. This could be expected since residuals are, by
definition, constructed to have mean zero.

We estimate models (I), (II), and (III) from 1970:1 — 1977:3 and generate a one
step ahead forecast (1977:4). Next we update the model using data including
1977:4 and again generate a one step ahead forecast (1978:1). This procedure is
repeated until the observation from 1987:3 is included.

In order to compare the three different models we estimate their respective root
mean square error:

i b -
RMSE = [—1. 3 (x(t+1)—x(t+1))2]”2
T_J t,=j+1

The results are presented in Table 6 below:
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Table 6 The root mean square error (RMSE) for models (I), (II) and (III).

(1) (II) MAF (IIl) VAR
Y 3132 2 962 3 059
I 1 645 907 931
G 1209 996 1001
g 2 843 1775 1796
M 3 084 1958 2 050
X 2 756 2179 2 220

Table 6 shows us that there is still a great deal of information to be explained in
the residuals. We can also see that MAF performs slightly better than VAR
(although this might not be the "best" VAR or MAF model). This could be
explained by the MAF technique trying to sort out the "signal" and throw away
the "noise" before predicting, while VAR does not sort out the noise component.

6 CONCLUDING REMARKS

There are, of course, many remaining questions about how the MAF approach is
related to vector autoregression and to cointegrated systems, which allow individu-
al time series to be integrated, e.g. to have a linear, possibly stochastic trend, but
require certain linear combinations of the series to be stationary. Here we will
briefly deal with a few of them.

Consider the following special case of a VAR—model:
x(t) = Cx(t—1) + uAt) (24)

where C is estimated by least squares. The same model would in our MAF
approach be estimated in two steps. We would start by estimating the vectors 7, in

the equation:
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z(t) = 7x(t) =1 B p (25)
by maximizing the correlation over time. We would then run the regressions:
x(t+1) = Gz(t) + e(t+1) = B(7)x(t) + e(t+1) (26)
and come up with a least square estimate of the vector 4.

Clearly, we would obtain the same asymptotic estimates in both approaches, i.e.
B(7) =C.

Since more information is used in the MAF procedure, we would expect it to yield
more precise estimates than VAR for finite samples.?

This conjecture is supported by the following example, which essentially is the
Stock—Watson example mentioned in the introduction (we have omitted the price
equation):

(i) Y, =V: +7,
(if) e R
P

(iii) c, =¥,

where u, = 0, y; = §, with E(6,) = 0, and 4, 6,,... are identically independently
distributed. Assume that we have three observations (cyyy)s (cy,), and (C3:74)-
Similar to the proof in appendix A it can be shown that zl(t) = c, and zz(t) =

2 6t. We are forecasting Cr1 assuming that the constant term is zero. The MAF

model to be estimated is:

¢,y = Fz,(t) = fe,

t+1

9 The argument is similar to the one used by Johansen (1988) to advocate a
maximum likelihood estimator of the space of cointegration vectors instead
of regression estimates.



and the least square estimate of § yields:

- u3
Bygig= L

[+

The corresponding VAR~model is:

[v =a,c, + @,y

t+1 t

which can be rewritten as:
¢, oy = ﬁct + aéﬁL

The QLS estimates of J and a are:

As the observant reader has realized ,Ei

VAR
at and u, are normally distributed with mean zero, since the ratio between two
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and ﬂM AF have no finite variance when

such variables is Cauchy—distributed. Technically this problem can be solved by
not allowing values in an arbitrarily small symmetric interval around zero. We can

then write:

a x [/
Var[f,,p] = Var[fy, ] + Var [f]

In a prediction of ¢ 4 the squares of the predictions errors are, respectively:

2

. 2 _ Y3
E(¢,(MAF) ~-c,]" = Var[u, + Ii;] + Var[u,]
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) U} u,
E[¢,(VAR) - c,] ‘= E[¢ (MAF) - C4]2 + Var[—yz(u2 +u,) + T 03]
1 1

The last term equals:

]
3Var[u, &

2

6
] = 3Var(u,] - E[&] E[4] 2 3Var[u,] -iﬁ-]d 3Var([u,]

¢ E[¢°]

1 1

—

where Jensen’s inequality has been used. A simulation study (Sjosteds (1991)) for
larger samples (n > 5) justifies that the prediction error for VAR continues to be

larger than for MAF. The study also supports that the errors reach the same limit
asn-o.

Worth mentioning is that we have run regressions with different numbers of
MAFs, in order to study the optimal number of MAFs to include in the forecasting
equations. We have also tried differentiation to make the time series stationary
and have been able to reduce the prediction error further. This and related
questions are to be discussed in a forthcoming paper.
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Svensk sammanfattning

I uppsatsen introduceras en ny prognosmetodik som &r baserad pd en multivariat
teknik som tillimpats i s k fjirranalys. Grundidén ir helt enkelt att dela upp
informationen i tidsserierna i tvi delar; en del som &r intressant for prognosinda-
mal och en del som inte ir anvindbar i prognossyfte. Den senare delen rensas ut
frin prognosinstrumentet, di det brus som den annars skulle tillféra goér prognoser-
na mindre precisa.

I konjunktursammanhang ir det en bra gissning att den information som ir in-
tressant for prognosindamil ligger inbiddad i ett matt pid korrelationen Gver
tiden. Vi bildar dirfdr linjirkombinationer av en grupp av konjunkturvariabler —
hir komponenterna i bruttonationalprodukten — och viljer vikter si att korrela-
tionen Gver tiden maximeras. Nir vi gjort detta en ging upprepas samma procedur
med den skillnaden att vikterna nu viljs ortogonalit mot det forsta viktsystemet.
Vi kan fortsitta att pi detta sitt generera oberoende vikter lika manga steg som
antalet konjunkturvariabler. De linjirkombinationer av de ursprungliga tidsserier-
na som de hirledda viktsystemen ger kallar vi Min/Max autokorrelationsfaktorer
(MAF).

De MAF som skapas av viktsystem som ger lig korrelation Gver tiden remsar vi
bort ifrin prognosinsirumentet, vilket i vart exempel bestar av regressionsekva-
tioner, dir BNP—komponenter utgdr de beroende variablerna, och de oberoende
variablerna ir MAF med h&g korrelation éver tiden. Teoretiskt forutsitter hirled-
ningen av MAF att de ingdende tidsserierna &r stationira och dirfor har vi rensat
tidsserierna frin trend innan korrelationen 6ver tiden maximeras. I prognosinstru-
mentet finns trenden iterlagd variabelvis.

Uppsatsen innehéller sivil teoretiska resultat kring egenskaperna hos MAF som en
exemplifiering av anvindbarheten av prognostekmiken. Vi jimfSr ocksd, utom
samplet, vir prognosidé med en variant av s k vektorautoregression, vilken svarar
mot ett prognosinstirument dir alla MAF finns med i regressionsekvationen. Det
visar sig att vir prognosmetod resulterar i ett mindre prognosfel matt som "Root
Mean Square Error".
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Appendix A

For the Stock and Watson example discussed in the Introduction the following
holds:

2 2
(a,+a,)"cov(c,, 6 4) + a,cov(p,,p, ;)
max corr(z,, z, ) = max
a 2 BB,
(A.1)

subject to |jaf| =1

is maximized by a, = 1 and a, = a, = 0. Here B, =V(z) = (a, + ag)QV(ct) +
2 2
a;V(p,) + aV(y}).

PROOF: To be able to find unique MAFs, we assume that Py = 0, Cp=1u and

0
p, = ¢, =0 when t < 0. This yields V(ct) = t+1, V(pt) =i cov(ct, ¢,,) =tand

COV(pt, ptﬂl) =t-1.

Assume that (a +a,) and a, are optimally chosen. It is then obviously true that

corr(-) is a decreasing function of a.f. Hence, a, =0 at maximum, implying that

?2_ ., .2
a.3 =1 32.
Now let
azcov(c c, .) + (1—a2)cov( )
2 2 £ S 2 Py Py
ga,) =

JalV(e) + (1e)V(p,) V'alV(c,,) + (1a)V(p,_)

B alt + (1-a7)(t-1) B

Jag(t+1) + (1—aD)t /8l + (1-ad)(t-1)
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n bl

2 1

= T=J Lo

al+t as+t
2

Hence, g(ag) is maximized for a, = 1. Since a, = 0 and a.§ =1- a? - a.g = 0, this

proves the claim.

Remark: The statement in (A.1) is true regardless of the specification of the pro-
cesses ¢, and p, as long as (i) and (iii) in relation (1) hold, yi is white noise and we

have orthogonality between y’:, P, and ¢, and corr(pt, pt__l) < corr(ch, Ct—l)' If

corr(pt, pt__l) > corr(c ), the first MAF is p, instead of c.

t? Ct—l
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Appendix B

GNP Investments
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Appendix C
Proof that (1-R%(x)) = (1-R*(4))(1-R*(e))

From the definition of Rz(,u), it follows that:

Ry = M) = () Se(e”
X(x(t) - %)

The corresponding expression from the regression é(t+1) = f(-) is given by:

L= Rz(e) = Tle(t+1) — égt+1)12
Te(t+1)

since € = %Ee(t) =0

from the regression technique which was used to determine i(t).
The predictor X(t+1) is obtained as:

x(t+1) = p(t+1) + &(t+1)

with the relative squared prediction error:

| — R¥x) = ME(e41) — x(t+1))>
Vv

Using the definition of R%(4), and that ;c(t+1) —x(t+1) = &(t+1) — e(t+1) proves
the claim.
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